

Presents

Structural Calculations

for

Project/Client:

Architect:

Anchorage for ADA Lift & Guardrail Capital Center HS2 Cafeteria Upgrade Beaverton, OR 97006 Nate Carter Solarc Architecture, Inc Portland, OR 97227

Project No. 18-085 Date: November 6, 2018

Project Scope: ADA upgrades require the following engineering:

- Design post installed anchors to support ADA lift at stairs
- Design post installed anchors to support guardrail at stairs
- Minimum concrete for anchor install:
 - 5" slab on grade
 - 3000 psi concrete

Codes used: 2014 OREGON STRUCTURAL SPECIALTY CODE (IBC)

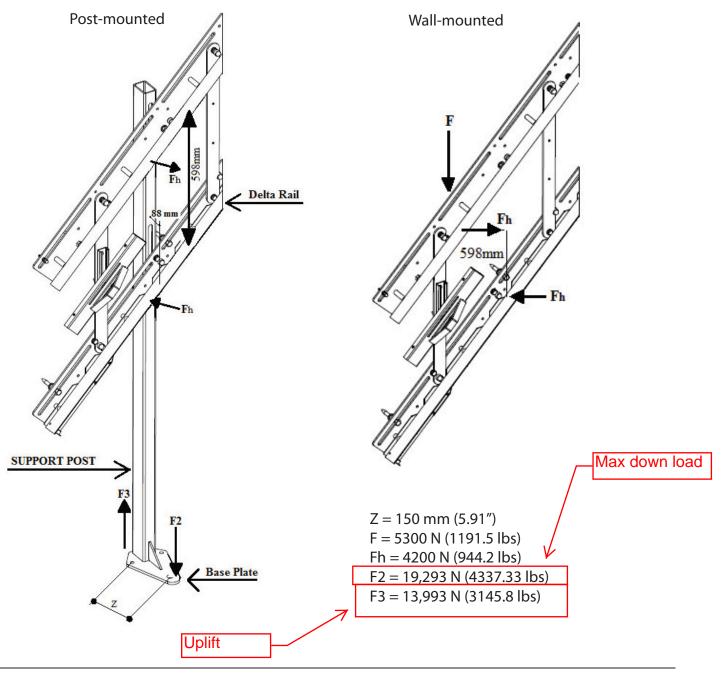
Loads Used:

Live load reactions are taken from the <u>Savaria Delta Straight Inclined Platform Lift</u> guide: 19-m09-2017, Part No. 000817

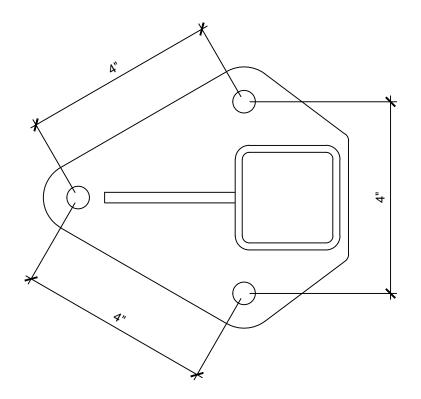
Note: this design is for base mounted stand only. No anchorage to the wall is assumed nor provided.

Structural details

Floor/support wall loads


A qualified professional must ensure that the building and stairway will safely support all loads imposed by the lift equipment. Adequate structural support must be provided at the top landing, bottom landing and throughout the supporting wall along the stairs.

The pull-out force on the supporting wall will vary depending on the type of rail mounting used (wall brackets or support posts on the steps). Refer to the previous illustration of the guide rail mounting configurations.


All wood studs in the supporting wall must be anchored in the ceiling and the floor to meet the pull-out force requirements. Wood studs must be placed at 16" (404 mm) centres (minimum), solidly anchored in the floor and ceiling.

The floor load will vary depending on the type of rail mounting used (wall brackets or support posts on the steps).

Where required, the rail must be securely fastened to the structural support wall.

DELTA Planning Guide Part No. 000817, 19-m09-2017

PROJECT NO: DRAFT DATE: DRAWN BY: CHECKED BY:

18-002 31-OCT-2018

CAPITAL CENTER HS2 CAFETERIA ADA UPGRADE

18640 NW WALKER ROAD BEAVERTON, OREGON 97006

Page 3

240 N BROADWAY ST, SUITE 308, PORTLAND, OR 97227 PH: 971.344.1919 | www.Solarc-A.com

Company:	Date:	10/30/2018
Engineer:	Page:	1/4
Project:		
Address:		
Phone:		
E-mail:		

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-11 Units: Imperial units

Anchor Information:

Anchor type: Torque controlled expansion anchor

Material: Carbon Steel Diameter (inch): 0.375

Nominal Embedment depth (inch): 2.875 Effective Embedment depth, her (inch): 2.500

Code report: ICC-ES ESR-3037

Anchor category: 1 Anchor ductility: Yes h_{min} (inch): 4.50 c_{ac} (inch): 6.00 C_{min} (inch): 6.00 S_{min} (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 5.00

State: Cracked

Compressive strength, f'c (psi): 3000

Ψ_{c,V}: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Ignore 6do requirement: Not applicable

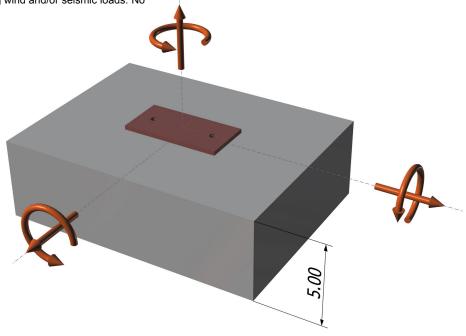
Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 3.00 x 6.00 x 0.25

Load and Geometry

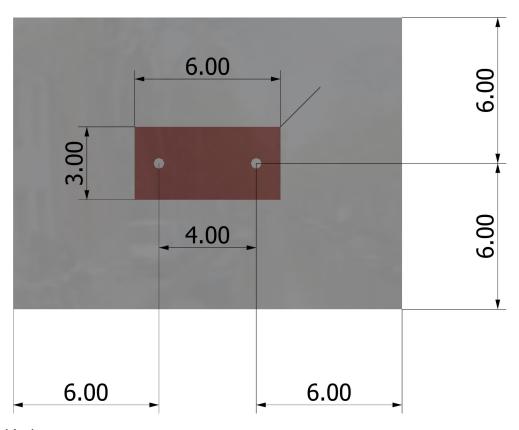
Load factor source: ACI 318 Section 9.2


Load combination: not set Seismic design: No

Anchors subjected to sustained tension: Not applicable

Apply entire shear load at front row: No

Anchors only resisting wind and/or seismic loads: No



Company:	Date:	10/30/2018
Engineer:	Page:	2/4
Project:		
Address:		
Phone:		
E-mail:		

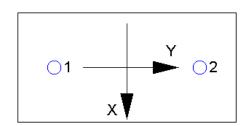
<Figure 2>

Recommended Anchor

Anchor Name: Strong-Bolt® 2 - 3/8"Ø CS Strong-Bolt 2, hnom:2.875" (73mm) Code Report: ICC-ES ESR-3037

Company:	Date:	10/30/2018
Engineer:	Page:	3/4
Project:		
Address:		
Phone:		
E-mail:		

3. Resulting Anchor Forces


Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	1573.0	0.0	0.0	0.0
2	1573.0	0.0	0.0	0.0
Sum	3146.0	0.0	0.0	0.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 3146 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension (Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
5600	0.75	4200	_

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda_a \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-6)

Kc	λa	f'c (psi)	h _{ef} (in)	N _b (I	b)					
17.0	1.00	3000	2.500	368	1					
$\phi N_{cbg} = \phi (A$	Nc / ANco) Yec, N	$\Psi_{ed,N}\Psi_{c,N}\Psi_{cp,N}N_{b}$	(Sec. D.4.1 &	Eq. D-4)						
A_{Nc} (in ²)	A_{Nco} (in ²)	c _{a,min} (in)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)	
86.25	56.25	6.00	1.000	1.000	1.00	1.000	3681	0.65	3668	-

6. Pullout Strength of Anchor in Tension (Sec. D.5.3)

 $\phi N_{pn} = \phi \Psi_{c,P} \lambda_a N_p (f'_c / 2,500)^n$ (Sec. D.4.1, Eq. D-13 & Code Report)

$\Psi_{c,P}$	λa	N_p (lb)	f_c (psi)	n	ϕ	ϕN_{pn} (lb)
1.0	1.00	2775	3000	0.50	0.65	1976

Company:	Date:	10/30/2018
Engineer:	Page:	4/4
Project:		
Address:		
Phone:		
E-mail:		

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1573	4200	0.37	Pass
Concrete breakout	3146	3668	0.86	Pass (Governs)
Pullout	1573	1976	0.80	Pass

3/8"Ø CS Strong-Bolt 2, hnom:2.875" (73mm) meets the selected design criteria.

12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections D.8.1 and D.8.2 for torqued cast-in-place anchor is waived per designer option.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

	DOWNWARD FORCE
	CHECK SLAB:
	P Down = 4337#
	V -
	(6 177)
	~ 1'2"
	MTOIM
Y.	
	GHEAR CAPACITY OF SLAB: 5" DOOD BUDDESI
	PER ACT 14.5,5.1 42/6/604
-	PERACI 14.5,5.1 \$2 \(\fill_{\text{c}}\) buh \(\cappa=1.0\)
	3 /21.8
	1 = (- ")(-1
	= 4 3000ps: (23")(5")
	*
	5x2+1.5=115" = 8498"> 4337"
	permeter= 11.5" = 2= 23"
	# SUR CAN
Market 1 (40 22 4 to make a modern a market	RESIST THIS LOAD
	IN SHEAR

	Beau. School ADA
	GUARDRAIC
	1/2 "STEEL PIPE!
	48" MAX SPACING OF POSTS:
	P=200#
	M= 7200
	36" Pag 3/4 7 5 7 - 421
	Pipe Mn = Z. Fy Z = . 421
	Mn = 0.421m3 x 35 tsi 1.67 Weld @ Rist:
	Werd a Bast: 05E% 72E"
_	Werd a RASE: = 8,8 = 7.2 = 9
	DI-INCLO PER AISC Ch. 8
R=.754	3 -1 00 -13
	1/2: 84" I= TIR3 = (1.8) 6 243 3 3 3 4 (30) (35) = 313) 1.5
	720
	1 - rale = 200 x 36 x 115 - dit /in =) Use 19
	To 1.86" FILLET
	1m = Paec = 200" x 36" x 35" = 29 x /in = Use 14" To 1.86 Va = 70 x 31 x .6 x 0.707 x 1/4
	Tp 1.86 Va = 70 k six.6 20.707 x 1/4 Na = 20 k six.6 20.707 x 1/4 Res = 3.74 k / h
	$N_{2} = \frac{70 \text{ Kir. 6}}{50.707 \times 1/4}$ $S=2 = 3.74 \text{ K/in}$
	$N_{2} = \frac{70 \text{ Fig. 6}}{\Omega = 2} = 3.74 \text{ K/h}$
	$N_{2} = \frac{70 \text{ Kir. 6}}{50.707 \times 1/4}$ $S=2 = 3.74 \text{ K/in}$
	$N_{2} = \frac{70 \text{ Kir. 6}}{50.707 \times 1/4}$ $S=2 = 3.74 \text{ K/in}$
	$N_{2} = \frac{70 \text{ Kir. 6}}{50.707 \times 1/4}$ $S=2 = 3.74 \text{ K/in}$

PIPE 1/2" 510.	10 10	74V PLATE	3/6" 5"	
SKGI		E 1" 740 1" 740 TYP		
LOAD =		LB momen	7 01	
		STRONG		
	3	3/8"\$ ~/	2.875 X	on emsol
		5	PECIAL :	레이트 (1985년 1987년 1일 : 1985년 1일 : 1985년 - 1985년 1985년 1985년 1일 : 1985년 1985년 1985년 1985년 1985년 1985년 1985년 1985 - 1985년
Ben	THO WAY	₹;		
and the second s	RESISTANCE;	T=M=9	72W"=2	400
1	00 × 1.9 × 1.4	0-1952,375	1726 Kall)	9-1.41
mp = 94	L (2,679-1)	1) (6)(.75")		
MP = QU	∞-/ch		12	
mp = 20 $m = 12$	00-/ch	xS = 2.5 ^E	13	0 4

Company:	Date:	10/30/2018
Engineer:	Page:	1/4
Project:		
Address:		
Phone:		
E-mail:		

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-11 Units: Imperial units

Anchor Information:

Anchor type: Torque controlled expansion anchor

Material: Carbon Steel Diameter (inch): 0.375

Nominal Embedment depth (inch): 2.875 Effective Embedment depth, hef (inch): 2.500

Code report: ICC-ES ESR-3037

Anchor category: 1 Anchor ductility: Yes h_{min} (inch): 4.50 cac (inch): 6.00 Cmin (inch): 6.00 S_{min} (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 5.00

State: Cracked

Compressive strength, f'c (psi): 3000

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No Ignore concrete breakout in tension: No Ignore concrete breakout in shear: No Ignore 6do requirement: Not applicable

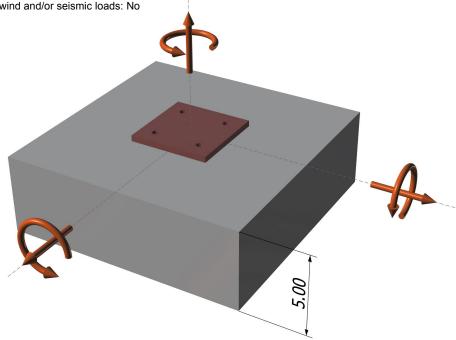
Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 5.00 x 5.00 x 0.38

Load and Geometry

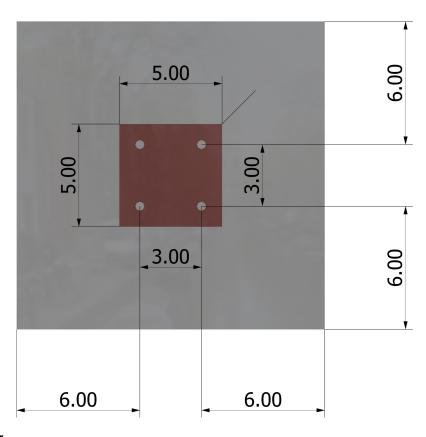
Load factor source: ACI 318 Section 9.2


Load combination: not set Seismic design: No

Anchors subjected to sustained tension: Not applicable

Apply entire shear load at front row: No

Anchors only resisting wind and/or seismic loads: No



Company:	Date:	10/30/2018
Engineer:	Page:	2/4
Project:		
Address:		
Phone:		
E-mail:		

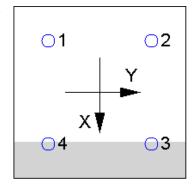
<Figure 2>

Recommended Anchor

Anchor Name: Strong-Bolt® 2 - 3/8"Ø CS Strong-Bolt 2, hnom:2.875" (73mm) Code Report: ICC-ES ESR-3037

Company:	Date:	10/30/2018
Engineer:	Page:	3/4
Project:		
Address:		
Phone:		
E-mail:		

3. Resulting Anchor Forces


Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	987.5	0.0	0.0	0.0	
2	987.5	0.0	0.0	0.0	
3	0.0	0.0	0.0	0.0	
4	0.0	0.0	0.0	0.0	
Sum	1975.1	0.0	0.0	0.0	

Maximum concrete compression strain (%): 0.17 Maximum concrete compression stress (psi): 745

Resultant tension force (lb): 1975 Resultant compression force (lb): 1975

Eccentricity of resultant tension forces in x-axis, e^i_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e^i_{Ny} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension (Sec. D.5.1)

Nsa (lb)	ϕ	ϕN_{sa} (lb)	
5600	0.75	4200	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 f'_c (psi)

 $N_b = k_c \lambda_a \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-6)

Kc

17.0	1.00	3000	2.500	3681					
$\phi N_{cbg} = \phi (A$	Nc / ANco) Ψec,N !	$\Psi_{ed,N}\Psi_{c,N}\Psi_{cp,N}$	/ _b (Sec. D.4.1	& Eq. D-4)					
A_{Nc} (in ²)	A_{Nco} (in ²)	c _{a,min} (in)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕl
78 75	56 25	6.00	1 000	1 000	1.00	1 000	3681	0.65	3,

N_b (lb)

6. Pullout Strength of Anchor in Tension (Sec. D.5.3)

 $\phi N_{pn} = \phi \Psi_{c,P} \lambda_a N_p (f'_c / 2,500)^n$ (Sec. D.4.1, Eq. D-13 & Code Report)

$\Psi_{c,P}$	λa	N_p (lb)	f'_c (psi)	n	ϕ	ϕN_{pn} (lb)
1.0	1.00	2775	3000	0.50	0.65	1976

hef (in)

Company:	Date:	10/30/2018
Engineer:	Page:	4/4
Project:		
Address:		
Phone:		
E-mail:		

11. Results

11. Interaction of Tensile and Shear Forces (Sec. D.7)?

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	988	4200	0.24	Pass
Concrete breakout	1975	3349	0.59	Pass (Governs)
Pullout	988	1976	0.50	Pass

3/8"Ø CS Strong-Bolt 2, hnom:2.875" (73mm) meets the selected design criteria.

12. Warnings

- Minimum spacing and edge distance requirement of 6da per ACI 318 Sections D.8.1 and D.8.2 for torqued cast-in-place anchor is waived per designer option.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.