

NOTICE: These documents are instruments of professional service, and information contained therein is incomplete unless used in conjunction with DLR Group's interpretations, decisions, observations and administrations. Use or reproduction of these documents in whole or in part without DLR Group's consent is in violation of common law, copyrights, statutory and other reserved rights, which preempts state and local public records act.

SECTION 000002 – TABLE OF CONTENTS

DIVISION 00 – PROCUREMENT AND CONTRACTING REQUIREMENTS PROVIDED IN INVITATION TO BID (ITB) (BY OWNER)

DIVISION 01 – GENERAL REQUIREMENTS

SECTION 011000	SUMMARY
SECTION 012500	SUBSTITUTION PROCEDURES
SECTION 012500A	SUBSTITUTION REQUEST FORMS
SECTION 012600	CONTRACT MODIFICATION PROCEDURES
SECTION 012900	PAYMENT PROCEDURES
SECTION 013100	PROJECT MANAGEMENT AND COORDINATION
SECTION 013200	CONSTRUCTION PROGRESS DOCUMENTATION
SECTION 013300	SUBMITTAL PROCEDURES
SECTION 014000	QUALITY REQUIREMENTS
SECTION 014200	REFERENCES
SECTION 016000	PRODUCT REQUIREMENTS
SECTION 017419	CONSTRUCTION WASTE MANAGEMENT AND DISPOSAL
SECTION 017700	CLOSEOUT PROCEDURES
SECTION 017823	OPERATION AND MAINTENANCE DATA
SECTION 017839	PROJECT RECORD DOCUMENTS

DIVISION 02 – EXISTING CONDITIONS

SECTION 024119 SELECTIVE DEMOLITION

DIVISION 03 – CONCRETE

SECTION 033000	CAST-IN-PLACE CONCRETE
2201101.000000	

DIVISION 05 – METALS

SECTION 055000	METAL FABRICATIONS

DIVISION 06 – WOOD, PLASTICS, AND COMPOSITES

SECTION 061053	MISCELLANEOUS ROUGH CARPENTRY
SECTION 061600	SHEATHING

DIVISION 07 – THERMAL AND MOISTURE PROTECTION

SECTION 071113	BITUMINOUS DAMPPROOFING
SECTION 072100	THERMAL INSULATION
SECTION 072500	WEATHER BARRIERS
SECTION 072600	VAPOR RETARDERS
SECTION 074113.16	STANDING SEAM METAL ROOF
SECTION 074646	FIBER-CEMENT SIDING
SECTION 076200	SHEET METAL FLASHING AND TRIM
SECTION 079200	JOINT SEALANTS

DIVISION 08 – OPENINGS

SECTION 081113	HOLLOW METAL DOORS AND FRAMES
SECTION 083613	SECTIONAL DOORS
SECTION 087100	DOOR HARDWARE
SECTION 087100A	DOOR HARDWARE SCHEDULE
SECTION 089119	OPERABLE LOUVERS

DIVISION 09 – FINISHES

SECTION 092900	GYPSUM BOARD
SECTION 099113	EXTERIOR PAINTING

DIVISION 10 – SPECIALTIES

DIVISION 23 – HEATING, VENTILATING AND AIR CONDITIONING

HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT
VIBRATION AND SEISMIC CONTROL FOR HVAC PIPING AND
EQUIPMENT
IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT
METAL DUCTS
CENTRIFUGAL HVAC FANS
REGISTERS AND GRILLES
WALL AND CEILING UNIT HEATERS

DIVISION 26 – ELECTRICAL

SECTION 260553	IDENTIFICATION FOR ELECTRICAL SYSTEMS
SECTION 262416	PANELBOARDS
SECTION 262726	WIRING DEVICES
SECTION 262813	FUSES
SECTION 262816	ENCLOSED SWITCHES AND CIRCUIT BREAKERS
SECTION 265100	INTERIOR LIGHTING
SECTION 265600	EXTERIOR LIGHTING

DIVISION 31 – EARTHWORK

SECTION 312000	EARTH MOVING
SECTION 312317	TRENCHING
SECTION 312500	EROSION AND SEDIMENT CONTROL

DIVISION 32 – EXTERIOR IMPROVEMENTS

SECTION 321123	AGGREGATE BASE COURSES
SECTION 321313	CONCRETE PAVING

DIVISION 33 – UTILITIES

SECTION 334100	STORM DRAINAGE PIPING
SECTION 334900	STORM DRAINAGE STRUCTURES

APPENDICES

APPENDIX B - GEOTECHNICAL REPORT

END OF TABLE OF CONTENTS

SECTION 011000 - SUMMARY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Project information.
 - 2. Work covered by Contract Documents.
 - 3. Phased construction.
 - 4. Work by Owner.
 - 5. Work under separate contracts.
 - 6. Future work.
 - 7. Purchase contracts.
 - 8. Owner-furnished products.
 - 9. Contractor-furnished, Owner-installed products.
 - 10. Access to site.
 - 11. Coordination with occupants.
 - 12. Work restrictions.
 - 13. Specification and Drawing conventions.
 - 14. Miscellaneous provisions.
- B. Related Requirements:
 - 1. Section 015000 "Temporary Facilities and Controls" for limitations and procedures governing temporary use of Owner's facilities.

1.3 **PROJECT INFORMATION**

- A. Project Identification:
 - 1. Arts & Communication Magnet Academy (ACMA).
 - 2. Project Location: 11375 SW Center St., Beaverton, OR 97005.
- B. Owner: Beaverton School District. Owner's Representative: Leslie Imes Construction Project Manager Facilities Development Department 16550 SW Merlo Road Beaverton, OR 97003 (503) 356-4575

- C. Architect: DLR Group.
- D. Web-Based Project Software: Project software administered by Owner will be used for purposes of managing communication and documents during the construction stage.
 - 1. See Beaverton School District standards for requirements for using web-based Project software.

1.4 WORK COVERED BY CONTRACT DOCUMENTS

- A. The Work of Project is defined by the Contract Documents and consists of the following:
 - 1. Construction of an approximately 656 square foot storage shed of type VB construction.
- B. Type of Contract:
 - 1. Project will be constructed under a single prime contract (per AIA documents A101-2007 and A201-2007).
- C. Project Considerations:
 - 1. Hazardous material abatement will be done by the District (BSD) under separate contract. General Contractor shall coordinate scheduling, demolition, and building locations with abatement subcontractor, District Representative, and District Consultant. New construction shall not commence until completion of hazardous material abatement.
- D. Services to Provide:
 - 1. Once through the two-step solicitation process, the awarded Contractor is responsible for providing a complete project per the Construction Documents including materials, labor, equipment and coordination with the District and the design team.
- E. Specific Construction Services Description:
 - 1. Coordinate weekly construction meetings with the District and the design team.
 - 2. Prepare site and building logistics plans to encompass all proposed activities and impacts to the site, adjacent properties, and neighboring streets.
 - 3. Fully coordinate the work of subcontractors and suppliers. Provide regular and on-going quality inspection and assistance to the design team in ensuring that the Work meets the Specifications and applicable codes.
 - 4. Coordinate inspections with the authority have jurisdiction (AHJ) and third-party special inspections (provided by the District).
 - 5. Review and expedite Change Order requests and maintain logs.
 - 6. Monitor compliance with payment of prevailing wages on all contracts and subcontracts, per ORS 279C.
 - 7. Maintain in a current condition Project Records including, but not necessarily limited to permits, Construction Documents, as-built records, meeting records, submittals, inspection reports, invoices, delivery receipts, daily activity logs, Requests for Information (RFI); RFI logs; Submittals; Submittal Logs; Inspection Reports; Change Order Proposals (COP); COP logs; Change Orders (CO); CO logs; Construction Change Directives (CCD); CCD

logs; Architect's Supplemental Instructions (ASI); ASI logs; Permits; Project Allowance(s) Reconciliation; Project Contingency status reports; and Project Schedule updates.

- 8. Transmit copies of MWESB Contact Logs, Career Learning Reports and Apprenticeship Program Logs monthly via eBuilder (as required).
- 9. Intelligent and selective use of Building Information Modeling (BIM), where applicable.
- 10. Use of the district's internet-based e-builder project management system for coordination of efforts, approvals, and expedited communication is required.

1.5 WORK BY OWNER

A. General: Cooperate fully with Owner so work may be carried out smoothly, without interfering with or delaying work under this Contract or work by Owner. Coordinate the Work of this Contract with work performed by Owner.

1.6 OWNER-FURNISHED PRODUCTS

- A. Owner will furnish products indicated. The Work includes receiving, unloading, handling, storing, protecting, and installing Owner-furnished products and making building services connections.
- B. Owner-Furnished Products:
 - 1. As noted in Owner Furnished Material and Equipment Schedule in drawing set.

1.7 ACCESS TO SITE

A. General: Contractor shall have access to the Project site during the construction period according to AIA201 3.13.

1.8 WORK RESTRICTIONS

- A. Work Restrictions, General: Comply with restrictions on construction operations.
 - 1. Comply with limitations on use of public streets and with other requirements of authorities having jurisdiction.
- B. Existing Utility Interruptions: Do not interrupt utilities serving facilities occupied by Owner or others unless permitted under the following conditions and then only after providing temporary utility services according to requirements indicated:
 - 1. Notify Owner not less than two days in advance of proposed utility interruptions.
 - 2. Obtain Owner's written permission before proceeding with utility interruptions.
- C. Restricted Substances: Use of tobacco products and other controlled substances on Project site is not permitted.
- D. Employee Identification: Provide identification tags for Contractor personnel working on Project site. Require personnel to use identification tags at all times.

- E. Employee Screening: Comply with Owner's requirements for screening of Contractor personnel working on Project site.
 - 1. Maintain list of approved screened personnel with Owner's representative.
 - 2. Badging to be provided by contractor.

1.9 SPECIFICATION AND DRAWING CONVENTIONS

- A. Specification Content: The Specifications use certain conventions for the style of language and the intended meaning of certain terms, words, and phrases when used in particular situations. These conventions are as follows:
 - 1. Imperative mood and streamlined language are generally used in the Specifications. The words "shall," "shall be," or "shall comply with," depending on the context, are implied where a colon (:) is used within a sentence or phrase.
 - 2. Specification requirements are to be performed by Contractor unless specifically stated otherwise.
- B. Division 01 General Requirements: Requirements of Sections in Division 01 apply to the Work of all Sections in the Specifications.
- C. Drawing Coordination: Requirements for materials and products identified on Drawings are described in detail in the Specifications. One or more of the following are used on Drawings to identify materials and products:
 - 1. Terminology: Materials and products are identified by the typical generic terms used in the individual Specifications Sections.
 - 2. Abbreviations: Materials and products are identified by abbreviations published as part of the U.S. National CAD Standard and scheduled on Drawings.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 011000

SECTION 012500 - SUBSTITUTION PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for substitutions.
- B. Related Requirements:
 - 1. Section 016000 "Product Requirements" for requirements for submitting comparable product submittals for products by listed manufacturers.

1.3 DEFINITIONS

- A. Substitutions: Changes in products, materials, equipment, and methods of construction from those required by the Contract Documents and proposed by Contractor.
 - 1. Substitutions for Cause: Changes proposed by Contractor that are required due to changed Project conditions, such as unavailability of product, regulatory changes, or unavailability of required warranty terms.
 - 2. Substitutions for Convenience: Changes proposed by Contractor that are not required in order to meet other Project requirements but may offer advantage to Contractor.

1.4 ACTION SUBMITTALS

- A. Substitution Requests: Refer to AIA Document A201 in the Supplementary Conditions for consideration of requests received after Contract award. Submit three copies of each request for consideration. Identify product or fabrication or installation method to be replaced. Include Specification Section number and title and Drawing numbers and titles.
 - 1. Substitution Request Form: Use facsimile of form provided in Project Manual.
 - 2. Documentation: Show compliance with requirements for substitutions and the following, as applicable:
 - a. Statement indicating why specified product or fabrication, or installation method cannot be provided, if applicable.
 - b. Coordination of information, including a list of changes or revisions needed to other parts of the Work and to construction performed by Owner and separate contractors that will be necessary to accommodate proposed substitution.

- c. Detailed comparison of significant qualities of proposed substitutions with those of the Work specified. Include annotated copy of applicable Specification Section. Significant qualities may include attributes, such as performance, weight, size, durability, visual effect, sustainable design characteristics, warranties, and specific features and requirements indicated. Indicate deviations, if any, from the Work specified.
- d. Product Data, including drawings and descriptions of products and fabrication and installation procedures.
- e. Samples, where applicable or requested.
- f. Certificates and qualification data, where applicable or requested.
- g. List of similar installations for completed projects, with project names and addresses as well as names and addresses of architects and owners.
- h. Material test reports from a qualified testing agency, indicating and interpreting test results for compliance with requirements indicated.
- i. Research reports evidencing compliance with building code in effect for Project, from ICC-ES.
- j. Detailed comparison of Contractor's construction schedule using proposed substitutions with products specified for the Work, including effect on the overall Contract Time. If specified product or method of construction cannot be provided within the Contract Time, include letter from manufacturer, on manufacturer's letterhead, stating date of receipt of purchase order, lack of availability, or delays in delivery.
- k. Cost information, including a proposal of change, if any, in the Contract Sum.
- 1. Contractor's certification that proposed substitution complies with requirements in the Contract Documents, except as indicated in substitution request, is compatible with related materials and is appropriate for applications indicated.
- m. Contractor's waiver of rights to additional payment or time that may subsequently become necessary because of failure of proposed substitution to produce indicated results.
- 3. Architect's Action: If necessary, Architect will request additional information or documentation for evaluation within seven days of receipt of a request for substitution. Architect will notify Contractor of acceptance or rejection of proposed substitution within 14 days of receipt of request, or seven days of receipt of additional information or documentation, whichever is later.
 - a. Forms of Acceptance: Change Order, Construction Change Directive, or Architect's Supplemental Instructions for minor changes in the Work.
 - b. Use product specified if Architect does not issue a decision on use of a proposed substitution within time allocated.

1.5 QUALITY ASSURANCE

A. Compatibility of Substitutions: Investigate and document compatibility of proposed substitution with related products and materials. Engage a qualified testing agency to perform compatibility tests recommended by manufacturers.

1.6 **PROCEDURES**

A. Coordination: Revise or adjust affected work as necessary to integrate work of the approved substitutions.

1.7 SUBSTITUTIONS

- A. Substitutions for Cause: Submit requests for substitution immediately on discovery of need for change, but not later than 14 days prior to time required for preparation and review of related submittals.
 - 1. Conditions: Architect will consider Contractor's request for substitution when the following conditions are satisfied. If the following conditions are not satisfied, Architect will return requests without action, except to record noncompliance with these requirements:
 - a. Requested substitution is consistent with the Contract Documents and will produce indicated results.
 - b. Substitution request is fully documented and properly submitted.
 - c. Requested substitution will not adversely affect Contractor's construction schedule.
 - d. Requested substitution has received necessary approvals of authorities having jurisdiction.
 - e. Requested substitution is compatible with other portions of the Work.
 - f. Requested substitution has been coordinated with other portions of the Work.
 - g. Requested substitution provides specified warranty.
 - h. If requested substitution involves more than one contractor, requested substitution has been coordinated with other portions of the Work, is uniform and consistent, is compatible with other products, and is acceptable to all contractors involved.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 012500

SUBSTITUTION REQUEST

(After the Bidding Phase)

Project:	Substitution Request Number:
	From:
To:	Date:
	A/E Project Number:
Re:	Contract For:
Specification Title:	Description:
Section:Page:	Article/Paragraph:
Proposed Substitution:	
Manufacturer Address:Phone:	
Trade Name:	Model No.:
Installer:Address:	Phone
History: New product 2-5 years old X 5-10 yea	urs old Different More than 10 years old
Differences between proposed substitution and specified product	t:
X[Ppint-by-point comparative data attached	
Reason for not providing specified item:	
Similar Installation: Project: Arch	hitect
Address: Own	hitect:
	e Installed:
Proposed substitution affects other parts of Work:X No	
Savings to Owner for accepting substitution:	(\$).
Proposed substitution changes Contract Time:	Yes [Add] [Deduct]days.
Supporting Data Attached:	nta E Samplas E Tasta E Parata E
Supporting Data Attached: Drawings Product Da	ata Samples Tests Reports
© Copyright 1996, Construction Specification Institute,	Page of September 1996
99 Canal Center Plaza, Suite 300 Alexandria, VA 22314	CSI Form 13.1A

ACMA BEAVERTON SCHOOL DISTRICT BEAVERTON, OREGON

DLR GROUP PROJECT NO. 74-18109-00

CONFORMED SET SUBSTITUTION REQUEST (Continued)

	.		
I'ha	Inc	arcianad	certifies:
INC	One	ici signicu	certifies.

- Proposed substitution has been fully investigated and determined to be equal or superior in all respects to specified product.
- Same warranty will be furnished for proposed substitution as for specified product.
- Same maintenance service and source of replacement parts, as applicable, is available.
- Proposed substitution will have no adverse effect on other trades and will not affect or delay progress schedule.
- Cost data as stated above is complete. Claims for additional costs related to accepted substitution which may subsequently become apparent are to be waived.
- Proposed substitution does not affect dimensions and functional clearances.
- Payment will be made for changes to building design, including A/E design, detailing, and construction costs caused by the substitution.
- Coordination, installation, and changes in the Work as necessary for accepted substitution will be complete in all respects.

Submitted by:					
Signed by:					
Firm:					
Address:					
Telephone:					
Attachments:					
A/E's REVIEW AND AC	- Make submittals in as noted - Make subn Use specified materia	nittals in accordance v als.			
Signed by:					Date:
Additional Comments:	Contractor	Subcontractor	Supplier	Manufacturer	A/E

Copyright 1996, Construction Specification Institute, 99 Canal Center Plaza, Suite 300 Alexandria, VA 22314 September 1996 CSI Form 13.1A

ACMA BEAVERTON SCHOOL DISTRICT BEAVERTON, OREGON

CONFORMED SET

SUBSTITUTION

REQUEST	
(During the Bidding Phase)	

Project:		Substitution Request Number:	
		From:	
То:			
		A/E Project Number:	
Re:		Contract For:	
Specification Title:		Description:	
Section:	Page:	Article/Paragraph:	
Proposed Substitution:			
Manufacturer:	Address:	Phone:	
Trade Name:		Model No.:	

Attached data includes product description, specifications, drawings, photographs, and performance and test data adequate for evaluation of the request; applicable portions of the data are clearly identified.

Attached data also includes a description of changes to the Contract Documents that the proposed substitution will require for its proper installation.

The Undersigned certifies:

- Proposed substitution has been fully investigated and determined to be equal or superior in all respects to specified product.
- Same warranty will be furnished for proposed substitution as for specified product.
- Same maintenance service and source of replacement parts, as applicable, is available.
- Proposed substitution will have no adverse effect on other trades and will not affect or delay progress schedule.
- Proposed substitution does not affect dimensions and functional clearances.
- Payment will be made for changes to building design, including A/E design, detailing, and construction costs caused by the substitution.

Submitted by: Signed by: Firm: Address:	
Telephone:	

A/E's REVIEW AND ACTION

Substitution approved - Make submittals in accordance with Specification Section 01330. Substitution approved as noted - Make submittals in accordance with Specification Section 0 Substitution rejected - Use specified materials. Substitution Request received too late - Use specified materials.	1330.
Signed by:	Date:
Supporting Data Attached: Drawings X Product Data Samples Tes	sts Reports
© Copyright 1996, Construction Specifications Institute, Page of 99 Canal Center Plaza, Suite 300 Alexandria, VA 22314	September 1996 CSI Form 1.5C

SECTION 012600 - CONTRACT MODIFICATION PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract (AIA 201), including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for handling and processing Contract modifications.
- B. Related Requirements:
 - 1. Section 012500 "Substitution Procedures" for administrative procedures for handling requests for substitutions made after the Contract award.

1.3 MINOR CHANGES IN THE WORK

A. Architect will issue supplemental instructions authorizing minor changes in the Work, not involving adjustment to the Contract Sum or the Contract Time, on AIA Document G710 and eBuilder.

1.4 PROPOSAL REQUESTS

- A. Owner-Initiated Proposal Requests: Architect will issue a detailed description of proposed changes in the Work that may require adjustment to the Contract Sum or the Contract Time. If necessary, the description will include supplemental or revised Drawings and Specifications.
 - 1. Work Change Proposal Requests issued by Architect are not instructions either to stop work in progress or to execute the proposed change.
 - 2. Within 10 days after receipt of Proposal Request, submit a quotation estimating cost adjustments to the Contract Sum and the Contract Time necessary to execute the change.
 - a. Include a list of quantities of products required or eliminated and unit costs, with total amount of purchases and credits to be made. If requested, furnish survey data to substantiate quantities.
 - b. Indicate applicable taxes, delivery charges, equipment rental, and amounts of trade discounts.
 - c. Include costs of labor and supervision directly attributable to the change.
 - d. Include an updated Contractor's construction schedule that indicates the effect of the change, including, but not limited to, changes in activity duration, start and finish times, and activity relationship. Use available total float before requesting an extension of the Contract Time.

- e. Quotation Form: Use forms acceptable to Architect.
- B. Contractor-Initiated Proposals: If latent or changed conditions require modifications to the Contract, Contractor may initiate a claim by submitting a request for a change to Architect.
 - 1. Include a statement outlining reasons for the change and the effect of the change on the Work. Provide a complete description of the proposed change. Indicate the effect of the proposed change on the Contract Sum and the Contract Time.
 - 2. Include a list of quantities of products required or eliminated and unit costs, with total amount of purchases and credits to be made. If requested, furnish survey data to substantiate quantities.
 - 3. Indicate applicable taxes, delivery charges, equipment rental, and amounts of trade discounts.
 - 4. Include costs of labor and supervision directly attributable to the change.
 - 5. Include an updated Contractor's construction schedule that indicates the effect of the change, including, but not limited to, changes in activity duration, start and finish times, and activity relationship. Use available total float before requesting an extension of the Contract Time.
 - 6. Comply with requirements in Section 012500 "Substitution Procedures" if the proposed change requires substitution of one product or system for product or system specified.
 - 7. Proposal Request Form: Use form acceptable to Architect.

1.5 CHANGE ORDER PROCEDURES

- A. A Change Order is a written instrument prepared by the Architect, Owner or Contractor and signed by the Owner, Contractor and (at Owner's election) Architect stating their agreement upon all of the following:
 - 1. The change in the Work;
 - 2. The amount of the adjustment, if any, in the Contract Sum; and
 - 3. The extent of the adjustment, if any, in the Contract Time.
- B. Methods used in determining adjustments to the Contract Sum may include those listed in Section 7.3.3.
- C. Agreement on any Amendment shall constitute a final settlement of all matters relating to the change in the Work that is the subject of the Change Order, including, but not limited to, all direct and indirect costs associated with such change and any and all adjustments to the Contract Sum, the construction schedule, and the Contract Time.

1.6 CONSTRUCTION CHANGE DIRECTIVE

A. A Construction Change Directive is a written order signed by the Owner (and at Owner's election, prepared and/or signed by Architect), directing a change in the Work prior to agreement on adjustment, if any, in the Contract Sum or Contract Time, or both. The Owner may by Construction Change Directive, without invalidating the Contract, order changes in the Work within the general scope of the Contract consisting of additions, deletions or other revisions, the Contract Sum and Contract Time being adjusted accordingly.

B. A Construction Change Directive shall be executed in accordance with the General Conditions of the Contract.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 012600

SECTION 012900 - PAYMENT PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements necessary to prepare and process Applications for Payment.
- B. Related Requirements:
 - 1. Section 012600 "Contract Modification Procedures" for administrative procedures for handling changes to the Contract.
 - 2. Section 013200 "Construction Progress Documentation" for administrative requirements governing the preparation and submittal of the Contractor's construction schedule.

1.3 DEFINITIONS

A. Schedule of Values: A statement furnished by Contractor allocating portions of the Contract Sum to various portions of the Work and used as the basis for reviewing Contractor's Applications for Payment.

1.4 SCHEDULE OF VALUES

- A. Format and Content: Use Project Manual table of contents as a guide to establish line items for the schedule of values. Provide at least one line item for each Specification Section.
 - 1. Identification: Include the following Project identification on the schedule of values:
 - a. Project name and location.
 - b. Name of Architect.
 - c. Architect's Project number.
 - d. Contractor's name and address.
 - e. Date of submittal.
 - 2. Arrange the schedule of values in tabular form, with separate columns to indicate the following for each item listed:
 - a. Related Specification Section or Division.
 - b. Description of the Work.
 - c. Name of subcontractor.

- d. Name of manufacturer or fabricator.
- e. Name of supplier.
- f. Change Orders (numbers) that affect value.
- g. Dollar value of the following, as a percentage of the Contract Sum to nearest onehundredth percent, adjusted to total 100 percent. Round dollar amounts to whole dollars, with total equal to Contract Sum.
 - 1) Labor.
 - 2) Materials.
 - 3) Equipment.
- 3. Provide a breakdown of the Contract Sum in enough detail to facilitate continued evaluation of Applications for Payment and progress reports. Provide multiple line items for principal subcontract amounts in excess of five percent of the Contract Sum.
- 4. Provide a separate line item in the schedule of values for each part of the Work where Applications for Payment may include materials or equipment purchased or fabricated and stored, but not yet installed.
 - a. Differentiate between items stored on-site and items stored off-site.
- 5. Overhead Costs: Include total cost and proportionate share of general overhead and profit for each line item.
- 6. Closeout Costs. Include separate line items under Contractor and principal subcontracts for Project closeout requirements in an amount totaling five percent of the Contract Sum and subcontract amount.
- 7. Schedule of Values Revisions: Revise the schedule of values when Change Orders or Construction Change Directives result in a change in the Contract Sum. Include at least one separate line item for each Change Order and Construction Change Directive.

1.5 APPLICATIONS FOR PAYMENT

- A. Each Application for Payment following the initial Application for Payment shall be consistent with previous applications and payments as certified by Architect and paid for by Owner.
- B. Payment Application Times: The date for each progress payment is indicated in the Agreement between Owner and Contractor. The period of construction work covered by each Application for Payment is the period indicated in the Agreement.
- C. Application Preparation: Complete every entry on form. Notarize and execute by a person authorized to sign legal documents on behalf of Contractor. Architect will return incomplete applications without action.
 - 1. Entries shall match data on the schedule of values and Contractor's construction schedule. Use updated schedules if revisions were made.
 - 2. Include amounts for work completed following previous Application for Payment, whether or not payment has been received. Include only amounts for work completed at time of Application for Payment.
 - 3. Include amounts of Change Orders and Construction Change Directives issued before last day of construction period covered by application.

- 4. Indicate separate amounts for work being carried out under Owner-requested project acceleration.
- D. Transmittal: Submit signed and notarized original copies of each Application for Payment to Architect through Owner's web-based program (eBuilder).
- E. Initial Application for Payment: Administrative actions and submittals that must precede or coincide with submittal of first Application for Payment include the following:
 - 1. List of subcontractors.
 - 2. Schedule of values.
 - 3. Contractor's construction schedule (preliminary if not final).
 - 4. Products list (preliminary if not final).
 - 5. Sustainable design action plans, including preliminary project materials cost data.
 - 6. Schedule of unit prices.
 - 7. Submittal schedule (preliminary if not final).
 - 8. List of Contractor's staff assignments.
 - 9. List of Contractor's principal consultants.
 - 10. Copies of building permits.
 - 11. Copies of authorizations and licenses from authorities having jurisdiction for performance of the Work.
 - 12. Initial progress report.
 - 13. Report of preconstruction conference.
- F. Application for Payment at Substantial Completion: After Architect issues the Certificate of Substantial Completion, submit an Application for Payment showing 100 percent completion for portion of the Work claimed as substantially complete.
 - 1. Include documentation supporting claim that the Work is substantially complete and a statement showing an accounting of changes to the Contract Sum.
 - 2. This application shall reflect Certificate(s) of Substantial Completion issued previously for Owner occupancy of designated portions of the Work.
 - 3. Contractor shall provide all requirements of documents AIA 201 Section 9.10.2.
- G. Final Payment Application: After completing Project closeout requirements, submit final Application for Payment with releases and supporting documentation not previously submitted and accepted, including, but not limited, to the following:
 - 1. Evidence of completion of Project closeout requirements.
 - 2. Insurance certificates for products and completed operations where required and proof that taxes, fees, and similar obligations were paid.
 - 3. Updated final statement, accounting for final changes to the Contract Sum.
 - 4. All listed items in AIA Document A201 Section 9.10.2.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 012900

SECTION 013100 - PROJECT MANAGEMENT AND COORDINATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative provisions for coordinating construction operations on Project including, but not limited to, the following:
 - 1. General coordination procedures.
 - 2. Coordination drawings.
 - 3. RFIs.
 - 4. Digital project management procedures.
 - 5. Project meetings.
- B. Related Requirements:
 - 1. Section 013200 "Construction Progress Documentation" for preparing and submitting Contractor's construction schedule.
 - 2. Section 017700 "Closeout Procedures" for coordinating closeout of the Contract.

1.3 DEFINITIONS

- A. BIM: Building Information Modeling.
- B. RFI: Request for Information. Request from Owner, Architect, or Contractor seeking information required by or clarifications of the Contract Documents.

1.4 INFORMATIONAL SUBMITTALS

- A. Subcontract List: Prepare a written summary identifying individuals or firms proposed for each portion of the Work, including those who are to furnish products or equipment fabricated to a special design. Include the following information in tabular form:
 - 1. Name, address, telephone number, and email address of entity performing subcontract or supplying products.
 - 2. Number and title of related Specification Section(s) covered by subcontract.
 - 3. Drawing number and detail references, as appropriate, covered by subcontract.

B. Key Personnel Names: Submit a list of key personnel assignments, including superintendent and other personnel in attendance at Project site in accordance with the General Conditions of the Contract.

1.5 GENERAL COORDINATION PROCEDURES

- A. Coordination: Coordinate construction operations included in different Sections of the Specifications to ensure efficient and orderly installation of each part of the Work. Coordinate construction operations included in different Sections that depend on each other for proper installation, connection, and operation.
 - 1. Schedule construction operations in sequence required to obtain the best results where installation of one part of the Work depends on installation of other components, before or after its own installation.
 - 2. Coordinate installation of different components to ensure maximum performance and accessibility for required maintenance, service, and repair.
 - 3. Make adequate provisions to accommodate items scheduled for later installation.
- B. Prepare memoranda for distribution to each party involved, outlining special procedures required for coordination. Include such items as required notices, reports, and list of attendees at meetings.
 - 1. Prepare similar memoranda for Owner and separate contractors if coordination of their Work is required.
- C. Administrative Procedures: Coordinate scheduling and timing of required administrative procedures with other construction activities to avoid conflicts and to ensure orderly progress of the Work. Such administrative activities include, but are not limited to, the following:
 - 1. Preparation of Contractor's construction schedule.
 - 2. Preparation of the schedule of values.
 - 3. Installation and removal of temporary facilities and controls.
 - 4. Delivery and processing of submittals.
 - 5. Progress meetings.
 - 6. Pre-installation conferences.
 - 7. Project closeout activities.
 - 8. Startup and adjustment of systems.

1.6 COORDINATION DRAWINGS

A. Coordination Drawings, General: Prepare coordination drawings according to requirements in individual Sections, and additionally where installation is not completely indicated on Shop Drawings, where limited space availability necessitates coordination, or if coordination is

required to facilitate integration of products and materials fabricated or installed by more than one entity.

- 1. Content: Project-specific information, drawn accurately to a scale large enough to indicate and resolve conflicts. Do not base coordination drawings on standard printed data. Include the following information, as applicable:
 - a. Use applicable Drawings as a basis for preparation of coordination drawings. Prepare sections, elevations, and details as needed to describe relationship of various systems and components.
 - b. Indicate functional and spatial relationships of components of architectural, structural, civil, mechanical, and electrical systems.
 - c. Indicate space requirements for routine maintenance and for anticipated replacement of components during the life of the installation.
 - d. Show location and size of access doors required for access to concealed dampers, valves, and other controls.
 - e. Indicate required installation sequences.
 - f. Indicate dimensions shown on Drawings. Specifically note dimensions that appear to be in conflict with submitted equipment and minimum clearance requirements. Provide alternative sketches to Architect indicating proposed resolution of such conflicts. Minor dimension changes and difficult installations will not be considered changes to the Contract.
- B. Coordination Drawing Organization: Organize coordination drawings as follows:
 - 1. Floor Plans and Reflected Ceiling Plans: Show architectural and structural elements, and mechanical, plumbing, fire-protection, fire-alarm, and electrical Work. Show locations of visible ceiling-mounted devices relative to acoustical ceiling grid. Supplement plan drawings with section drawings where required to adequately represent the Work.
 - 2. Plenum Space: Indicate sub-framing for support of ceiling and wall systems, mechanical and electrical equipment, and related Work. Locate components within plenums to accommodate layout of light fixtures and other components indicated on Drawings. Indicate areas of conflict between light fixtures and other components.
 - 3. Mechanical Rooms: Provide coordination drawings for mechanical rooms showing plans and elevations of mechanical, plumbing, fire-protection, fire-alarm, and electrical equipment.
 - 4. Structural Penetrations: Indicate penetrations and openings required for all disciplines.
 - 5. Slab Edge and Embedded Items: Indicate slab edge locations and sizes and locations of embedded items for metal fabrications, sleeves, anchor bolts, bearing plates, angles, door floor closers, slab depressions for floor finishes, curbs and housekeeping pads, and similar items.
 - 6. Mechanical and Plumbing Work: Show the following:
 - a. Sizes and bottom elevations of ductwork, piping, and conduit runs, including insulation, bracing, flanges, and support systems.
 - b. Dimensions of major components, such as dampers, valves, diffusers, access doors, cleanouts and electrical distribution equipment.
 - c. Fire-rated enclosures around ductwork.

- 7. Electrical Work: Show the following:
 - a. Runs of vertical and horizontal conduit 1-1/4 inches (32 mm) in diameter and larger.
 - b. Light fixture, exit light, emergency battery pack, smoke detector, and other firealarm locations.
 - c. Panel board, switch board, switchgear, transformer, busway, generator, and motorcontrol center locations.
 - d. Location of pull boxes and junction boxes, dimensioned from column center lines.
- 8. Fire-Protection System: Show the following:
 - a. Locations of standpipes, mains piping, branch lines, pipe drops, and sprinkler heads.
- 9. Review: Architect will review coordination drawings to confirm that in general the Work is being coordinated, but not for the details of the coordination, which are Contractor's responsibility. If Architect determines that coordination drawings are not being prepared in sufficient scope or detail, or are otherwise deficient, Architect will so inform Contractor, who shall make suitable modifications and resubmit.
- 10. Coordination Drawing Prints: Prepare coordination drawing prints according to requirements in Section 013300 "Submittal Procedures."
- C. Coordination Digital Data Files: Prepare coordination digital data files according to the following requirements:
 - 1. File Preparation Format: Same digital data software program, version, and operating system as original Drawings.
 - 2. File Preparation Format: DWG, Version, operating in Microsoft Windows operating system.
 - 3. File Submittal Format: Submit or post coordination drawing files using PDF format.
 - 4. BIM File Incorporation: Develop and incorporate coordination drawing files into BIM established for Project.
 - a. Perform three-dimensional component conflict analysis as part of preparation of coordination drawings. Resolve component conflicts prior to submittal. Indicate where conflict resolution requires modification of design requirements by Architect.
 - 5. Architect will furnish Contractor one set of digital data files of Drawings for use in preparing coordination digital data files.
 - a. Architect makes no representations as to the accuracy or completeness of digital data files as they relate to Drawings.
 - b. Digital Data Software Program: Drawings are available in BIM.
 - c. Contractor shall execute a data licensing agreement in the form of Agreement form acceptable to Owner and Architect.
 - 6. Allow up to 14 working days for review by Owner and Architect.

1.7 REQUEST FOR INFORMATION (RFI)

- A. General: Immediately on discovery of the need for additional information, clarification, or interpretation of the Contract Documents, Contractor shall prepare and submit an RFI in the form specified.
 - 1. Architect will return without response those RFIs submitted to Architect by other entities controlled by Contractor.
 - 2. Coordinate and submit RFIs in a prompt manner so as to avoid delays in Contractor's work or work of subcontractors.
- B. Content of the RFI: Include a detailed, legible description of item needing information or interpretation and the following:
 - 1. Project name.
 - 2. Project number.
 - 3. Date.
 - 4. Name of Contractor.
 - 5. Name of Architect.
 - 6. RFI number, numbered sequentially.
 - 7. RFI subject.
 - 8. Specification Section number and title and related paragraphs, as appropriate.
 - 9. Drawing number and detail references, as appropriate.
 - 10. Field dimensions and conditions, as appropriate.
 - 11. Contractor's suggested resolution. If Contractor's suggested resolution impacts the Contract Time or the Contract Sum, Contractor shall state impact in the RFI.
 - 12. Contractor's signature.
 - 13. Attachments: Include sketches, descriptions, measurements, photos, Product Data, Shop Drawings, coordination drawings, and other information necessary to fully describe items needing interpretation.
 - a. Include dimensions, thicknesses, structural grid references, and details of affected materials, assemblies, and attachments on attached sketches.
- C. RFI Forms: Software-generated form with substantially the same content as indicated above, acceptable to Architect.
 - 1. Attachments shall be electronic files in PDF format.
 - 2. RFIs will be submitted through owner provided web-based program (eBuilder).
- D. Architect's Action: Architect will review each RFI, determine action required, and respond. Allow seven working days for Architect's response for each RFI. RFIs received by Architect after 1:00 p.m. will be considered as received the following working day.
 - 1. The following Contractor-generated RFIs will be returned without action:
 - a. Requests for approval of submittals.
 - b. Requests for approval of substitutions.
 - c. Requests for approval of Contractor's means and methods.
 - d. Requests for coordination information already indicated in the Contract Documents.

- e. Requests for adjustments in the Contract Time or the Contract Sum.
- f. Requests for interpretation of Architect's actions on submittals.
- g. Incomplete RFIs or inaccurately prepared RFIs.
- 2. Architect's action may include a request for additional information, in which case Architect's time for response will date from time of receipt by Architect of additional information.
- 3. Architect's action on RFIs that may result in a change to the Contract Time or the Contract Sum may be eligible for Contractor to submit Change Proposal according to Section 012600 "Contract Modification Procedures."
 - a. If Contractor believes the RFI response warrants change in the Contract Time or the Contract Sum, notify Architect in writing within 10 days of receipt of the RFI response.
- E. RFI Log: Prepare, maintain, and submit a tabular log of RFIs organized by the RFI number. Submit log weekly. Use software log that is part of web-based Project software. Software log with not less than the following:
 - 1. Project name.
 - 2. Name and address of Contractor.
 - 3. Name and address of Architect.
 - 4. RFI number including RFIs that were returned without action or withdrawn.
 - 5. RFI description.
 - 6. Date the RFI was submitted.
 - 7. Date Architect's response was received.
 - 8. Identification of related Minor Change in the Work, Construction Change Directive, and Proposal Request, as appropriate.
- F. On receipt of Architect's action, update the RFI log and immediately distribute the RFI response to affected parties. Review response and notify Architect within seven days if Contractor disagrees with response.

1.8 DIGITAL PROJECT MANAGEMENT PROCEDURES

- A. Use of Architect's Digital Data Files: Digital data files of Architect's BIM model will be provided by Architect for Contractor's use during construction.
 - 1. Digital data files may be used by Contractor in preparing coordination drawings, Shop Drawings, and Project record Drawings.
 - 2. Architect makes no representations as to the accuracy or completeness of digital data files as they relate to Contract Drawings.
 - 3. Digital Drawing Software Program: Contract Drawings are available in BIM (Revit).
 - 4. Contractor shall execute a data licensing agreement in the form of AIA Document C106 Digital Data Licensing Agreement.
 - a. Sub-contractors, and other parties granted access by Contractor to Architect's digital data files shall execute a data licensing agreement in the form of AIA Document C106.

- B. Web-Based Project Software: Use Owner's web-based Project software site for purposes of hosting and managing Project communication and documentation until Final Completion.
- C. PDF Document Preparation: Where PDFs are required to be submitted to Architect, prepare as follows:
 - 1. Assemble complete submittal package into a single indexed file incorporating submittal requirements of a single Specification Section and transmittal form with links enabling navigation to each item.
 - 2. Name file with submittal number or other unique identifier, including revision identifier.
 - 3. Certifications: Where digitally submitted certificates and certifications are required, provide a digital signature with digital certificate on where indicated.

1.9 **PROJECT MEETINGS**

- A. General: Schedule and conduct meetings and conferences at Project site unless otherwise indicated.
 - 1. Attendees: Inform participants and others involved, and individuals whose presence is required, of date and time of each meeting. Notify Owner and Architect of scheduled meeting dates and times a minimum of 10 working days prior to meeting.
 - 2. Agenda: Prepare the meeting agenda. Distribute the agenda to all invited attendees.
 - 3. Minutes: Entity responsible for conducting meeting will record significant discussions and agreements achieved. Distribute the meeting minutes to everyone concerned, including Owner and Architect, within three days of the meeting.
- B. Preconstruction Conference: Schedule and conduct a preconstruction conference before starting construction, at a time convenient to Owner and Architect, but no later than 15 days after execution of the Agreement.
 - 1. Attendees: Authorized representatives of Owner, Owner's Commissioning Authority, Architect, and their consultants; Contractor and its superintendent; major subcontractors; suppliers; and other concerned parties shall attend the conference. Participants at the conference shall be familiar with Project and authorized to conclude matters relating to the Work.
 - 2. Agenda: Discuss items of significance that could affect progress, including the following:
 - a. Responsibilities and personnel assignments.
 - b. Tentative construction schedule.
 - c. Phasing.
 - d. Critical work sequencing and long lead items.
 - e. Designation of key personnel and their duties.
 - f. Lines of communications.
 - g. Use of web-based Project software.
 - h. Procedures for processing field decisions and Change Orders.
 - i. Procedures for RFIs.
 - j. Procedures for testing and inspecting.
 - k. Procedures for processing Applications for Payment.
 - 1. Distribution of the Contract Documents.

- m. Submittal procedures.
- n. Preparation of Record Documents.
- o. Use of the premises.
- p. Work restrictions.
- q. Working hours.
- r. Owner's occupancy requirements.
- s. Responsibility for temporary facilities and controls.
- t. Procedures for moisture and mold control.
- u. Procedures for disruptions and shutdowns.
- v. Construction waste management and recycling.
- w. Parking availability.
- x. Office, work, and storage areas.
- y. Equipment deliveries and priorities.
- z. First aid.
- aa. Security.
- 3. Minutes: Entity responsible for conducting meeting will record and distribute meeting minutes.
- C. Pre-installation Conferences: Conduct a pre-installation conference at Project site before each construction activity when required by other sections and when required for coordination with other construction.
 - 1. Attendees: Installer and representatives of manufacturers and fabricators involved in or affected by the installation and its coordination or integration with other materials and installations that have preceded or will follow, shall attend the meeting. Advise Architect and Owner's Commissioning Authority of scheduled meeting dates.
 - 2. Agenda: Review progress of other construction activities and preparations for the particular activity under consideration, including requirements for the following:
 - a. Contract Documents.
 - b. Options.
 - c. Related RFIs.
 - d. Related Change Orders.
 - e. Purchases.
 - f. Deliveries.
 - g. Submittals.
 - h. Sustainable design requirements.
 - i. Review of mockups.
 - j. Possible conflicts.
 - k. Compatibility requirements.
 - l. Time schedules.
 - m. Weather limitations.
 - n. Manufacturer's written instructions.
 - o. Warranty requirements.
 - p. Compatibility of materials.
 - q. Acceptability of substrates.
 - r. Temporary facilities and controls.
 - s. Space and access limitations.
 - t. Regulations of authorities having jurisdiction.
 - u. Testing and inspecting requirements.

- v. Installation procedures.
- w. Coordination with other work.
- x. Required performance results.
- y. Protection of adjacent work.
- z. Protection of construction and personnel.
- 3. Record significant conference discussions, agreements, and disagreements, including required corrective measures and actions.
- 4. Reporting: Distribute minutes of the meeting to each party present and to other parties requiring information.
- 5. Do not proceed with installation if the conference cannot be successfully concluded. Initiate whatever actions are necessary to resolve impediments to performance of the Work and reconvene the conference at earliest feasible date.
- D. Project Closeout Conference: Schedule and conduct a project closeout conference, at a time convenient to Owner and Architect, but no later than 90 days prior to the scheduled date of Substantial Completion.
 - 1. Conduct the conference to review requirements and responsibilities related to Project closeout.
 - 2. Attendees: Authorized representatives of Owner, Owner's Commissioning Authority, Architect, and their consultants; Contractor and its superintendent; major subcontractors; suppliers; and other concerned parties shall attend the meeting. Participants at the meeting shall be familiar with Project and authorized to conclude matters relating to the Work.
 - 3. Agenda: Discuss items of significance that could affect or delay Project closeout, including the following:
 - a. Preparation of Record Documents.
 - b. Procedures required prior to inspection for Substantial Completion and for final inspection for acceptance.
 - c. Procedures for completing and archiving web-based Project software site data files.
 - d. Submittal of written warranties.
 - e. Requirements for preparing operations and maintenance data.
 - f. Requirements for delivery of material samples, attic stock, and spare parts.
 - g. Requirements for demonstration and training.
 - h. Preparation of Contractor's punch list.
 - i. Procedures for processing Applications for Payment at Substantial Completion and for final payment.
 - j. Submittal procedures.
 - k. Owner's partial occupancy requirements.
 - 1. Installation of Owner's furniture, fixtures, and equipment.
 - m. Responsibility for removing temporary facilities and controls.
 - 4. Minutes: Entity conducting meeting will record and distribute meeting minutes.
- E. Progress Meetings: Conduct progress meetings at weekly intervals.
 - 1. Coordinate dates of meetings with preparation of payment requests.
 - 2. Attendees: In addition to representatives of Owner and Architect, each contractor, subcontractor, supplier, and other entity concerned with current progress or involved in planning, coordination, or performance of future activities shall be represented at these

meetings. All participants at the meeting shall be familiar with Project and authorized to conclude matters relating to the Work.

- 3. Agenda: Review and correct or approve minutes of previous progress meeting. Review other items of significance that could affect progress. Include topics for discussion as appropriate to status of Project.
 - a. Contractor's Construction Schedule: Review progress since the last meeting. Determine whether each activity is on time, ahead of schedule, or behind schedule, in relation to Contractor's construction schedule. Determine how construction behind schedule will be expedited; secure commitments from parties involved to do so. Discuss whether schedule revisions are required to ensure that current and subsequent activities will be completed within the Contract Time.
 - 1) Review schedule for next period.
 - b. Review present and future needs of each entity present, including the following:
 - 1) Interface requirements.
 - 2) Sequence of operations.
 - 3) Status of submittals.
 - 4) Deliveries.
 - 5) Off-site fabrication.
 - 6) Access.
 - 7) Site use.
 - 8) Temporary facilities and controls.
 - 9) Progress cleaning.
 - 10) Quality and work standards.
 - 11) Status of correction of deficient items.
 - 12) Field observations.
 - 13) Status of RFIs.
 - 14) Status of Proposal Requests.
 - 15) Pending changes.
 - 16) Status of Change Orders.
 - 17) Pending claims and disputes.
 - 18) Documentation of information for payment requests.
- 4. Minutes: Entity responsible for conducting the meeting will record and distribute the meeting minutes to each party present and to parties requiring information.
 - a. Schedule Updating: Revise Contractor's construction schedule after each progress meeting where revisions to the schedule have been made or recognized. Issue revised schedule concurrently with the report of each meeting.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 013100

SECTION 013200 - CONSTRUCTION PROGRESS DOCUMENTATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.
- B. AIA Document A201, Section 3.10

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for documenting the progress of construction during performance of the Work, including the following:
 - 1. Startup construction schedule.
 - 2. Contractor's Construction Schedule.
 - 3. Construction schedule updating reports.
 - 4. Daily construction reports.
 - 5. Material location reports.
 - 6. Site condition reports.
 - 7. Unusual event reports.
 - 8. Construction Document Updates

1.3 DEFINITIONS

- A. Activity: A discrete part of a project that can be identified for planning, scheduling, monitoring, and controlling the construction Project. Activities included in a construction schedule consume time and resources.
 - 1. Critical Activity: An activity on the critical path that must start and finish on the planned early start and finish times.
 - 2. Predecessor Activity: An activity that precedes another activity in the network.
 - 3. Successor Activity: An activity that follows another activity in the network.
- B. Float: The measure of leeway in starting and completing an activity.
 - 1. Float time is not for the exclusive use or benefit of either Owner or Contractor, but is a jointly owned, expiring Project resource available to both parties as needed to meet schedule milestones and Contract completion date.
 - 2. Free float is the amount of time an activity can be delayed without adversely affecting the early start of the successor activity.
 - 3. Total float is the measure of leeway in starting or completing an activity without adversely affecting the planned Project completion date.

C. Resource Loading: The allocation of manpower and equipment necessary for completing an activity as scheduled.

1.4 INFORMATIONAL SUBMITTALS

- A. Format for Submittals: Submit required submittals in the following format:
 - 1. Working electronic copy of schedule file, where indicated.
 - 2. PDF file.
- B. Startup construction schedule.
 - 1. Submittal of cost-loaded, startup construction schedule will not constitute approval of schedule of values for cost-loaded activities.
- C. Contractor's Construction Schedule: Initial schedule, of size required to display entire schedule for entire construction period.
 - 1. Submit a working digital copy of schedule, using software indicated, and labeled to comply with requirements for submittals.
- D. Construction Schedule Updating Reports: Submit with Applications for Payment.
- E. Daily Construction Reports: Submit at monthly intervals.
- F. Material Location Reports: Submit at monthly intervals.
- G. Site Condition Reports: Submit at time of discovery of differing conditions.
- H. Unusual Event Reports: Submit at time of unusual event.
- I. Qualification Data: For scheduling consultant.

1.5 QUALITY ASSURANCE

- A. Prescheduling Conference: Conduct conference at Project site to comply with requirements in Section 013100 "Project Management and Coordination." Review methods and procedures related to the preliminary construction schedule and Contractor's Construction Schedule, including, but not limited to, the following:
 - 1. Review software limitations and content and format for reports.
 - 2. Verify availability of qualified personnel needed to develop and update schedule.
 - 3. Discuss constraints, including phasing work stages area separations and interim milestones.
 - 4. Review delivery dates for Owner-furnished products.
 - 5. Review submittal requirements and procedures.
 - 6. Review time required for review of submittals and resubmittals.
 - 7. Review requirements for tests and inspections by independent testing and inspecting agencies.
 - 8. Review time required for Project closeout and Owner startup procedures, including commissioning activities.

- 9. Review and finalize list of construction activities to be included in schedule.
- 10. Review procedures for updating schedule.

1.6 COORDINATION

- A. Coordinate Contractor's Construction Schedule with the submittal schedule, progress reports, payment requests, and other required schedules and reports.
 - 1. Secure time commitments for performing critical elements of the Work from entities involved.
 - 2. Coordinate each construction activity in the network with other activities and schedule them in proper sequence.

1.7 CONTRACTOR'S CONSTRUCTION SCHEDULE, GENERAL

- A. Computer Scheduling Software: Prepare schedules using current version of a program that has been developed specifically to manage construction schedules.
 - 1. Use Scheduling component of Project website software specified in Section 013100 "Project Management and Coordination," or other approved software available to owner and architect for current Windows operating system.
- B. Time Frame: Extend schedule from date established for the Notice to Proceed to date of final completion.
 - 1. Contract completion date shall not be changed by submission of a schedule that shows an early completion date, unless specifically authorized by Change Order.
- C. Activities: Treat each floor or separate area as a separate numbered activity for each main element of the Work. Comply with the following:
 - 1. Activity Duration: Define activities so no activity is longer than 20 days, unless specifically allowed by Architect.
 - 2. Procurement Activities: Include procurement process activities for long lead items and major items, requiring a cycle of more than 60 days, as separate activities in schedule. Procurement cycle activities include, but are not limited to, submittals, approvals, purchasing, fabrication, and delivery.
 - 3. Submittal Review Time: Include review and resubmittal times indicated in Section 013300 "Submittal Procedures" in schedule. Coordinate submittal review times in Contractor's Construction Schedule with submittal schedule.
 - 4. Startup and Testing Time: Include no fewer than 15 days for startup and testing.
 - 5. Commissioning Time: Include no fewer than 15 days for commissioning.
 - 6. Substantial Completion: Indicate completion in advance of date established for Substantial Completion and, allow time for Architect's administrative procedures necessary for certification of Substantial Completion.
 - 7. Punch List and Final Completion: Include not more than 30 days for completion of punch list items and final completion.

- D. Constraints: Include constraints and work restrictions indicated in the Contract Documents and as follows in schedule and, show how the sequence of the Work is affected.
 - 1. Work by Owner: Include a separate activity for each portion of the Work performed by Owner.
 - 2. Products Ordered in Advance: Include a separate activity for each product. Include delivery date indicated in Section 011000 "Summary." Delivery dates indicated stipulate the earliest possible delivery date.
 - 3. Owner-Furnished Products: Include a separate activity for each product. Include delivery date indicated in Section 011000 "Summary." Delivery dates indicated stipulate the earliest possible delivery date.
 - 4. Work Restrictions: Show the effect of the following items on the schedule:
 - a. Coordination with existing construction.
 - b. Uninterruptible services.
 - c. Use-of-premises restrictions.
 - d. Provisions for future construction.
 - e. Seasonal variations.
 - f. Environmental control.
- E. Cost Correlation: Superimpose a cost correlation timeline, indicating planned and actual costs. On the line, show planned and actual dollar volume of the Work performed as of planned and actual dates used for preparation of payment requests.
 - 1. See Section 012900 "Payment Procedures" for cost reporting and payment procedures.
- F. Upcoming Work Summary: Prepare summary report indicating activities scheduled to occur or commence prior to submittal of next schedule update. Summarize the following issues:
 - 1. Unresolved issues.
 - 2. Unanswered Requests for Information.
 - 3. Rejected or unreturned submittals.
 - 4. Notations on returned submittals.
 - 5. Pending modifications affecting the Work and the Contract Time.
- G. Contractor's Construction Schedule Updating: At monthly intervals, update schedule to reflect actual construction progress and activities. Issue schedule one week before each regularly scheduled progress meeting.
 - 1. Revise schedule immediately after each meeting or other activity where revisions have been recognized or made. Issue updated schedule concurrently with the report of each such meeting.
 - 2. Include a report with updated schedule that indicates every change, including, but not limited to, changes in logic, durations, actual starts and finishes, and activity durations.
 - 3. As the Work progresses, indicate final completion percentage for each activity.
- H. Distribution: Distribute copies of approved schedule to Architect Owner, separate contractors, testing and inspecting agencies, and other parties identified by Contractor with a need-to-know schedule responsibility.
 - 1. Post copies in Project meeting rooms and temporary field offices.

2. When revisions are made, distribute updated schedules to the same parties and post in the same locations. Delete parties from distribution when they have completed their assigned portion of the Work and are no longer involved in performance of construction activities.

1.8 STARTUP CONSTRUCTION SCHEDULE

- A. Gantt-Chart Schedule: Submit startup, horizontal, Gantt-chart-type construction schedule within seven days of date established for the Notice to Proceed.
- B. Preparation: Indicate each significant construction activity separately. Identify first workday of each week with a continuous vertical line. Outline significant construction activities for first 90 days of construction. Include skeleton diagram for the remainder of the Work and a cash requirement prediction based on indicated activities.

1.9 GANTT-CHART SCHEDULE REQUIREMENTS

- A. Gantt-Chart Schedule: Submit a comprehensive, fully developed, horizontal, Gantt-chart-type, Contractor's Construction Schedule within 30 days of date established for commencement of the Work.
 - 1. Base schedule on the startup construction schedule and additional information received since the start of Project.
- B. Preparation: Indicate each significant construction activity separately. Identify first workday of each week with a continuous vertical line.
 - 1. For construction activities that require three months or longer to complete, indicate an estimated completion percentage in 10 percent increments within time bar.

1.10 REPORTS

- A. Daily Construction Reports: Prepare a daily construction report recording the following information concerning events at Project site:
 - 1. List of subcontractors at Project site.
 - 2. List of separate contractors at Project site.
 - 3. Approximate count of personnel at Project site.
 - 4. Equipment at Project site.
 - 5. Material deliveries.
 - 6. High and low temperatures and general weather conditions, including presence of rain or snow.
 - 7. Testing and inspection.
 - 8. Accidents.
 - 9. Meetings and significant decisions.
 - 10. Unusual events.
 - 11. Stoppages, delays, shortages, and losses.
 - 12. Meter readings and similar recordings.
 - 13. Emergency procedures.

- 14. Orders and requests of authorities having jurisdiction.
- 15. Change Orders received and implemented.
- 16. Construction Change Directives received and implemented.
- 17. Services connected and disconnected.
- 18. Equipment or system tests and startups.
- 19. Partial completions and occupancies.
- 20. Substantial Completions authorized.
- B. Site Condition Reports: Immediately on discovery of a difference between site conditions and the Contract Documents, prepare and submit a detailed report. Submit with a Request for Information. Include a detailed description of the differing conditions, together with recommendations for changing the Contract Documents.
- C. Unusual Event Reports: When an event of an unusual and significant nature occurs at Project site, whether or not related directly to the Work, prepare and submit a special report. List chain of events, persons participating, responses by Contractor's personnel, evaluation of results or effects, and similar pertinent information. Advise Owner in advance when these events are known or predictable.
 - 1. Submit unusual event reports directly to Owner within one day(s) of an occurrence. Distribute copies of report to parties affected by the occurrence.

1.11 CONSTRUCTION DOCUMENT UPDATES

- A. Project documents shall be updated regularly electronically and available to the owner/architect/subcontractors.
- B. Updated documents are to be made available via construction management software, such as Procore or some similar document control platform.
- C. Document tracking to include Contract document updates:
 - 1. Issued via ASI, CCD, PR, or similar form.
 - 2. RFI's
 - 3. Submittals

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 013200

SECTION 013300 - SUBMITTAL PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.
- B. AIA Document A201, Section 3.12

1.2 SUMMARY

- A. Section Includes:
 - 1. Submittal schedule requirements.
 - 2. Administrative and procedural requirements for submittals.
- B. Related Requirements:
 - 1. Section 012900 "Payment Procedures" for submitting Applications for Payment and the schedule of values.
 - 2. Section 013100 "Project Management and Coordination" for submitting coordination drawings and subcontract list and for requirements for web-based Project software.
 - 3. Section 013200 "Construction Progress Documentation" for submitting schedules and reports, including Contractor's construction schedule.
 - 4. Section 014000 "Quality Requirements" for submitting test and inspection reports, and schedule of tests and inspections.
 - 5. Section 017700 "Closeout Procedures" for submitting closeout submittals and maintenance material submittals.
 - 6. Section 017823 "Operation and Maintenance Data" for submitting operation and maintenance manuals.
 - 7. Section 017839 "Project Record Documents" for submitting record Drawings, record Specifications, and record Product Data.

1.3 DEFINITIONS

- A. Action Submittals: Written and graphic information and physical samples that require Architect's responsive action. Action submittals are those submittals indicated in individual Specification Sections as "action submittals."
- B. Informational Submittals: Written and graphic information and physical samples that do not require Architect's responsive action. Submittals may be rejected for not complying with requirements. Informational submittals are those submittals indicated in individual Specification Sections as "informational submittals."

1.4 SUBMITTAL SCHEDULE

- A. Submittal Schedule: Submit, as an action submittal, a list of submittals, arranged in chronological order by dates required by construction schedule. Include time required for review, ordering, manufacturing, fabrication, and delivery when establishing dates. Include additional time required for making corrections or revisions to submittals noted by Architect and additional time for handling and reviewing submittals required by those corrections.
 - 1. Coordinate submittal schedule with list of subcontracts, the schedule of values, and Contractor's construction schedule.
 - 2. Initial Submittal: Include submittals required during the first 60 days of construction. List those submittals required to maintain orderly progress of the Work and those required early because of long lead time for manufacture or fabrication.
 - 3. Final Submittal: Submit concurrently with the first complete submittal of Contractor's construction schedule.
 - a. Submit revised submittal schedule to reflect changes in current status and timing for submittals.
 - 4. Format: Arrange the following information in a tabular format:
 - a. Scheduled date for first submittal.
 - b. Specification Section number and title.
 - c. Submittal Category: Action; informational.
 - d. Name of subcontractor.
 - e. Description of the Work covered.
 - f. Scheduled date for Architect's final release or approval.

1.5 SUBMITTAL FORMATS

- A. Submittal Information: Include the following information in each submittal:
 - 1. Project name.
 - 2. Date.
 - 3. Name of Architect.
 - 4. Name of Contractor.
 - 5. Name of firm or entity that prepared submittal.
 - 6. Names of subcontractor, manufacturer, and supplier.
 - 7. Include Specification Section number with sequential alphanumeric identifier; and alphanumeric suffix for resubmittals.
 - 8. Category and type of submittal.
 - 9. Submittal purpose and description.
 - 10. Number and title of Specification Section, with paragraph number and generic name for each of multiple items.
 - 11. Drawing number and detail references, as appropriate.
 - 12. Location(s) where product is to be installed, as appropriate.
 - 13. Other necessary identification.
 - 14. Remarks.
 - 15. Signature of transmitter.

- B. Options: Identify options requiring selection by Architect.
- C. Deviations and Additional Information: On each submittal, clearly indicate deviations from requirements in the Contract Documents, including minor variations and limitations; include relevant additional information and revisions, other than those requested by Architect on previous submittals. Indicate by highlighting on each submittal or noting on attached separate sheet.
- D. PDF Submittals: Prepare submittals as PDF package, incorporating complete information into each PDF file. Name PDF file with submittal number.
- E. Submittals for Web-Based Project Software: Prepare submittals as PDF files, or other format indicated by Project software website.

1.6 SUBMITTAL PROCEDURES

- A. Prepare and submit submittals required by individual Specification Sections. Types of submittals are indicated in individual Specification Sections.
 - 1. Email: Prepare submittals as PDF package and, transmit to Architect by sending via email. Include PDF transmittal form. Include information in email subject line as requested by Architect.
 - a. Architect will return annotated file. Annotate and retain one copy of file as a digital Project Record Document file.
 - 2. Web-Based Project Software: Prepare submittals in PDF form, and upload to web-based Project software website. Enter required data in web-based software site to fully identify submittal.
- B. Coordination: Coordinate preparation and processing of submittals with performance of construction activities.
 - 1. Coordinate each submittal with fabrication, purchasing, testing, delivery, other submittals, and related activities that require sequential activity.
 - 2. Submit all submittal items required for each Specification Section concurrently unless partial submittals for portions of the Work are indicated on approved submittal schedule.
 - 3. Submit action submittals and informational submittals required by the same Specification Section as separate packages under separate transmittals.
 - 4. Coordinate transmittal of submittals for related parts of the Work specified in different Sections so processing will not be delayed because of need to review submittals concurrently for coordination.
 - a. Architect reserves the right to withhold action on a submittal requiring coordination with other submittals until related submittals are received.
- C. Processing Time: Allow time for submittal review, including time for resubmittals, as follows. Time for review shall commence on Architect's receipt of submittal. No extension of the Contract Time will be authorized because of failure to transmit submittals enough in advance of the Work to permit processing, including resubmittals.

- 1. Initial Review: Allow 14 days for initial review of each submittal. Allow additional time if coordination with subsequent submittals is required. Architect will advise Contractor when a submittal being processed must be delayed for coordination.
- 2. Intermediate Review: If intermediate submittal is necessary, process it in same manner as initial submittal.
- 3. Resubmittal Review: Allow 14 days for review of each resubmittal.
- 4. Sequential Review: Where sequential review of submittals by Architect's consultants, Owner, or other parties is indicated, allow 14 days for initial review of each submittal.
- 5. Concurrent Consultant Review: Where the Contract Documents indicate that submittals may be transmitted simultaneously to Architect and to Architect's consultants, allow 14 days for review of each submittal. Submittal will be returned to Architect before being returned to Contractor.
 - a. Submit one copy of submittal to concurrent reviewer in addition to specified number of copies to Architect and Construction Manager.
- D. Resubmittals: Make resubmittals in same form and number of copies as initial submittal.
 - 1. Note date and content of previous submittal.
 - 2. Note date and content of revision in label or title block and clearly indicate extent of revision.
 - 3. Resubmit submittals until they are marked with approval notation from Architect's action stamp.
- E. Distribution: Furnish copies of final submittals to manufacturers, subcontractors, suppliers, fabricators, installers, authorities having jurisdiction, and others as necessary for performance of construction activities. Show distribution on transmittal forms.
- F. Use for Construction: Retain complete copies of submittals on Project site. Use only final action submittals that are marked with approval notation from Architect's action stamp.

1.7 SUBMITTAL REQUIREMENTS

- A. Product Data: Collect information into a single submittal for each element of construction and type of product or equipment.
 - 1. If information must be specially prepared for submittal because standard published data are unsuitable for use, submit as Shop Drawings, not as Product Data.
 - 2. Mark each copy of each submittal to show which products and options are applicable.
 - 3. Include the following information, as applicable:
 - a. Manufacturer's catalog cuts.
 - b. Manufacturer's product specifications.
 - c. Standard color charts.
 - d. Statement of compliance with specified referenced standards.
 - e. Testing by recognized testing agency.
 - f. Application of testing agency labels and seals.
 - g. Notation of coordination requirements.
 - h. Availability and delivery time information.

- 4. For equipment, include the following in addition to the above, as applicable:
 - a. Wiring diagrams that show factory-installed wiring.
 - b. Printed performance curves.
 - c. Operational range diagrams.
 - d. Clearances required to other construction, if not indicated on accompanying Shop Drawings.
- 5. Submit Product Data before Shop Drawings, and before or concurrent with Samples.
- B. Shop Drawings: Prepare Project-specific information, drawn accurately to scale. Do not base Shop Drawings on reproductions of the Contract Documents or standard printed data.
 - 1. Preparation: Fully illustrate requirements in the Contract Documents. Include the following information, as applicable:
 - a. Identification of products.
 - b. Schedules.
 - c. Compliance with specified standards.
 - d. Notation of coordination requirements.
 - e. Notation of dimensions established by field measurement.
 - f. Relationship and attachment to adjoining construction clearly indicated.
 - g. Seal and signature of professional engineer if specified.
- C. Samples: Submit Samples for review of kind, color, pattern, and texture for a check of these characteristics with other materials.
 - 1. Transmit Samples that contain multiple, related components such as accessories together in one submittal package.
 - 2. Identification: Permanently attach label on unexposed side of Samples that includes the following:
 - a. Project name and submittal number.
 - b. Generic description of Sample.
 - c. Product name and name of manufacturer.
 - d. Sample source.
 - e. Number and title of applicable Specification Section.
 - f. Specification paragraph number and generic name of each item.
 - 3. Web-Based Project Software: Prepare submittals in PDF form, and upload to web-based Project software website. Enter required data in web-based software site to fully identify submittal.
 - 4. Disposition: Maintain sets of approved Samples at Project site, available for quality-control comparisons throughout the course of construction activity. Sample sets may be used to determine final acceptance of construction associated with each set.
 - a. Samples that may be incorporated into the Work are indicated in individual Specification Sections. Such Samples must be in an undamaged condition at time of use.
 - b. Samples not incorporated into the Work, or otherwise designated as Owner's property, are the property of Contractor.

- 5. Samples for Verification: Submit full-size units or Samples of size indicated, prepared from same material to be used for the Work, cured and finished in manner specified, and physically identical with material or product proposed for use, and that show full range of color and texture variations expected. Samples include, but are not limited to, the following: partial sections of manufactured or fabricated components; small cuts or containers of materials; complete units of repetitively used materials; swatches showing color, texture, and pattern; color range sets; and components used for independent testing and inspection.
 - a. Number of Samples: Submit three sets of Samples. Architect will retain two Sample sets; remainder will be returned. Mark up and retain one returned Sample set as a project record Sample.
 - 1) Submit a single Sample where assembly details, workmanship, fabrication techniques, connections, operation, and other similar characteristics are to be demonstrated.
 - 2) If variation in color, pattern, texture, or other characteristic is inherent in material or product represented by a Sample, submit at least three sets of paired units that show approximate limits of variations.
- D. Product Schedule: As required in individual Specification Sections, prepare a written summary indicating types of products required for the Work and their intended location. Include the following information in tabular form:
 - 1. Type of product. Include unique identifier for each product indicated in the Contract Documents or assigned by Contractor if none is indicated.
 - 2. Manufacturer and product name, and model number if applicable.
 - 3. Number and name of room or space.
 - 4. Location within room or space.
- E. Qualification Data: Prepare written information that demonstrates capabilities and experience of firm or person. Include lists of completed projects with project names and addresses, contact information of architects and owners, and other information specified.
- F. Design Data: Prepare and submit written and graphic information indicating compliance with indicated performance and design criteria in individual Specification Sections. Include list of assumptions and summary of loads. Include load diagrams if applicable. Provide name and version of software, if any, used for calculations. Number each page of submittal.
- G. Certificates:
 - 1. Certificates and Certifications Submittals: Submit a statement that includes signature of entity responsible for preparing certification. Certificates and certifications shall be signed by an officer or other individual authorized to sign documents on behalf of that entity. Provide a notarized signature where indicated.
 - 2. Installer Certificates: Submit written statements on manufacturer's letterhead certifying that Installer complies with requirements in the Contract Documents and, where required, is authorized by manufacturer for this specific Project.

- 3. Manufacturer Certificates: Submit written statements on manufacturer's letterhead certifying that manufacturer complies with requirements in the Contract Documents. Include evidence of manufacturing experience where required.
- 4. Material Certificates: Submit written statements on manufacturer's letterhead certifying that material complies with requirements in the Contract Documents.
- 5. Product Certificates: Submit written statements on manufacturer's letterhead certifying that product complies with requirements in the Contract Documents.
- 6. Welding Certificates: Prepare written certification that welding procedures and personnel comply with requirements in the Contract Documents. Submit record of Welding Procedure Specification and Procedure Qualification Record on AWS forms. Include names of firms and personnel certified.
- H. Test and Research Reports:
 - 1. Compatibility Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting results of compatibility tests performed before installation of product. Include written recommendations for primers and substrate preparation needed for adhesion.
 - 2. Field Test Reports: Submit written reports indicating and interpreting results of field tests performed either during installation of product or after product is installed in its final location, for compliance with requirements in the Contract Documents.
 - 3. Material Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting test results of material for compliance with requirements in the Contract Documents.
 - 4. Preconstruction Test Reports: Submit reports written by a qualified testing agency, on testing agency's standard form, indicating and interpreting results of tests performed before installation of product, for compliance with performance requirements in the Contract Documents.
 - 5. Product Test Reports: Submit written reports indicating that current product produced by manufacturer complies with requirements in the Contract Documents. Base reports on evaluation of tests performed by manufacturer and witnessed by a qualified testing agency, or on comprehensive tests performed by a qualified testing agency.
 - 6. Research Reports: Submit written evidence, from a model code organization acceptable to authorities having jurisdiction, that product complies with building code in effect for Project. Include the following information:
 - a. Name of evaluation organization.
 - b. Date of evaluation.
 - c. Time period when report is in effect.
 - d. Product and manufacturers' names.
 - e. Description of product.
 - f. Test procedures and results.
 - g. Limitations of use.

1.8 DELEGATED-DESIGN SERVICES

A. Performance and Design Criteria: Where professional design services or certifications by a design professional are specifically required of Contractor by the Contract Documents, provide products and systems complying with specific performance and design criteria indicated.

- 1. If criteria indicated are insufficient to perform services or certification required, submit a written request for additional information to Architect.
- B. Delegated-Design Services Certification: In addition to Shop Drawings, Product Data, and other required submittals, submit digitally signed PDF file and three paper copies of certificate, signed and sealed by the responsible design professional, for each product and system specifically assigned to Contractor to be designed or certified by a design professional.
 - 1. Indicate that products and systems comply with performance and design criteria in the Contract Documents. Include list of codes, loads, and other factors used in performing these services.

1.9 CONTRACTOR'S REVIEW

- A. Action Submittals and Informational Submittals: Review each submittal and check for coordination with other Work of the Contract and for compliance with the Contract Documents. Note corrections and field dimensions. Mark with approval stamp before submitting to Architect.
- B. Contractor's Approval: Indicate Contractor's approval for each submittal with indication in webbased Project software. Include name of reviewer, date of Contractor's approval, and statement certifying that submittal has been reviewed, checked, and approved for compliance with the Contract Documents.
 - 1. Architect will not review submittals received from Contractor that do not have Contractor's review and approval.

1.10 ARCHITECT'S REVIEW

- A. Action Submittals: Architect will review each submittal, indicate corrections or revisions required.
 - 1. PDF Submittals: Architect will indicate, via markup on each submittal, the appropriate action.
 - 2. Submittals by Web-Based Project Software: Architect will indicate, on Project software website, the appropriate action.
- B. Informational Submittals: Architect will review each submittal and will not return it, or will return it if it does not comply with requirements. Architect will forward each submittal to appropriate party.
- C. Incomplete submittals are unacceptable, will be considered nonresponsive, and will be returned for resubmittal without review.
- D. Architect will return without review submittals received from sources other than Contractor.
- E. Submittals not required by the Contract Documents will be returned by Architect without action.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 013300

SECTION 014000 - QUALITY REQUIREMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for quality assurance and quality control.
- B. Testing and inspection services are required to verify compliance with requirements specified or indicated. These services do not relieve Contractor of responsibility for compliance with the Contract Document requirements.
 - 1. Specific quality-assurance and quality-control requirements for individual work results are specified in their respective Specification Sections. Requirements in individual Sections may also cover production of standard products.
 - 2. Specified tests, inspections, and related actions do not limit Contractor's other qualityassurance and quality-control procedures that facilitate compliance with the Contract Document requirements.
 - 3. Requirements for Contractor to provide quality-assurance and quality-control services required by Architect, Owner, Commissioning Authority, or authorities having jurisdiction are not limited by provisions of this Section.
 - 4. Specific test and inspection requirements are not specified in this Section.

1.3 DEFINITIONS

- A. Experienced: When used with an entity or individual, "experienced" unless otherwise further described means having successfully completed a minimum of five previous projects similar in nature, size, and extent to this Project; being familiar with special requirements indicated; and having complied with requirements of authorities having jurisdiction.
- B. Field Quality-Control Tests: Tests and inspections that are performed on-site for installation of the Work and for completed Work.
- C. Installer/Applicator/Erector: Contractor or another entity engaged by Contractor as an employee, Subcontractor, or Sub-subcontractor, to perform a particular construction operation, including installation, erection, application, assembly, and similar operations.
 - 1. Use of trade-specific terminology in referring to a trade or entity does not require that certain construction activities be performed by accredited or unionized individuals, or that requirements specified apply exclusively to specific trade(s).

- D. Mockups: Full-size physical assemblies that are constructed on-site either as freestanding temporary built elements or as part of permanent construction. Mockups are constructed to verify selections made under Sample submittals; to demonstrate aesthetic effects and qualities of materials and execution; to review coordination, testing, or operation; to show interface between dissimilar materials; and to demonstrate compliance with specified installation tolerances. Mockups are not Samples. Unless otherwise indicated, approved mockups establish the standard by which the Work will be judged.
 - 1. Integrated Exterior Mockup: Mockup of the exterior envelope constructed on-site as freestanding temporary built elements or, as part of permanent construction, consisting of multiple products, assemblies, and subassemblies that demonstrate construction of exterior envelop can meet project design intent. Integrated mockup shall include:
 - a. Exterior wall framing.
 - b. Exterior wall sheathing and weather barrier.
 - c. Brick veneer, masonry ties, cavity drainage material, and weeps.
 - d. Insulation.
 - e. Typical window or storefront opening with framing, glazing and flashings.
 - f. Typical building corner with proposed brick coursing.
 - g. Sample of "AMCA" logo sign in brick veneer.
 - h. Typical brick control joint and joint sealant.
- E. Preconstruction Testing: Tests and inspections performed specifically for Project before products and materials are incorporated into the Work, to verify performance or compliance with specified criteria.
- F. Product Tests: Tests and inspections that are performed by a nationally recognized testing laboratory (NRTL) according to 29 CFR 1910.7, by a testing agency accredited according to NIST's National Voluntary Laboratory Accreditation Program (NVLAP), or by a testing agency qualified to conduct product testing and acceptable to authorities having jurisdiction, to establish product performance and compliance with specified requirements.
- G. Source Quality-Control Tests: Tests and inspections that are performed at the source; for example, plant, mill, factory, or shop.
- H. Testing Agency: An entity engaged to perform specific tests, inspections, or both. Testing laboratory shall mean the same as testing agency.
- I. Quality-Assurance Services: Activities, actions, and procedures performed before and during execution of the Work to guard against defects and deficiencies and substantiate that proposed construction will comply with requirements.
- J. Quality-Control Services: Tests, inspections, procedures, and related actions during and after execution of the Work to evaluate that actual products incorporated into the Work and completed construction comply with requirements. Contractor's quality-control services do not include contract administration activities performed by Architect or Construction Manager.

1.4 DELEGATED-DESIGN SERVICES

- A. Performance and Design Criteria: Where professional design services or certifications by a design professional are specifically required of Contractor by the Contract Documents, provide products and systems complying with specific performance and design criteria indicated.
 - 1. If criteria indicated are not sufficient to perform services or certification required, submit a written request for additional information to Architect.

1.5 CONFLICTING REQUIREMENTS

- A. Conflicting Standards and Other Requirements: If compliance with two or more standards or requirements are specified and the standards or requirements establish different or conflicting requirements for minimum quantities or quality levels, comply with the most stringent requirement. Refer conflicting requirements that are different, but apparently equal, to Architect for direction before proceeding.
- B. Minimum Quantity or Quality Levels: The quantity or quality level shown or specified shall be the minimum provided or performed. The actual installation may comply exactly with the minimum quantity or quality specified, or it may exceed the minimum within reasonable limits. To comply with these requirements, indicated numeric values are minimum or maximum, as appropriate, for the context of requirements. Refer uncertainties to Architect for a decision before proceeding.

1.6 ACTION SUBMITTALS

- A. Shop Drawings: For integrated exterior mockups.
 - 1. Include plans, sections, and elevations, indicating materials and size of mockup construction.
 - 2. Indicate manufacturer and model number of individual components.
 - 3. Provide axonometric drawings for conditions difficult to illustrate in two dimensions.
- B. Delegated-Design Services Submittal: In addition to Shop Drawings, Product Data, and other required submittals, submit a statement signed and sealed by the responsible design professional, for each product and system specifically assigned to Contractor to be designed or certified by a design professional, indicating that the products and systems are in compliance with performance and design criteria indicated. Include list of codes, loads, and other factors used in performing these services.

1.7 INFORMATIONAL SUBMITTALS

- A. Contractor's Quality-Control Plan: For quality-assurance and quality-control activities and responsibilities.
- B. Qualification Data: For Contractor's quality-control personnel.

- C. Contractor's Statement of Responsibility: When required by authorities having jurisdiction, submit copy of written statement of responsibility submitted to authorities having jurisdiction before starting work on the following systems:
 - 1. Seismic-force-resisting system, designated seismic system, or component listed in the Statement of Special Inspections.
 - 2. Main wind-force-resisting system or a wind-resisting component listed in the Statement of Special Inspections.
- D. Testing Agency Qualifications: For testing agencies specified in "Quality Assurance" Article to demonstrate their capabilities and experience. Include proof of qualifications in the form of a recent report on the inspection of the testing agency by a recognized authority.
- E. Schedule of Tests and Inspections: Prepare in tabular form and include the following:
 - 1. Specification Section number and title.
 - 2. Entity responsible for performing tests and inspections.
 - 3. Description of test and inspection.
 - 4. Identification of applicable standards.
 - 5. Identification of test and inspection methods.
 - 6. Number of tests and inspections required.
 - 7. Time schedule or time span for tests and inspections.
 - 8. Requirements for obtaining samples.
 - 9. Unique characteristics of each quality-control service.
- F. Reports: Prepare and submit certified written reports and documents as specified.
- G. Permits, Licenses, and Certificates: For Owner's record, submit copies of permits, licenses, certifications, inspection reports, releases, jurisdictional settlements, notices, receipts for fee payments, judgments, correspondence, records, and similar documents established for compliance with standards and regulations bearing on performance of the Work.

1.8 CONTRACTOR'S QUALITY-CONTROL PLAN

- A. Quality-Control Plan, General: Submit quality-control plan within 10 days of Notice to Proceed, and not less than five days prior to preconstruction conference. Submit in format acceptable to Architect. Identify personnel, procedures, controls, instructions, tests, records, and forms to be used to carry out Contractor's quality-assurance and quality-control responsibilities. Coordinate with Contractor's Construction Schedule.
- B. Quality-Control Personnel Qualifications: Engage qualified personnel trained and experienced in managing and executing quality-assurance and quality-control procedures similar in nature and extent to those required for Project.
 - 1. Project quality-control manager may also serve as Project superintendent.
- C. Submittal Procedure: Describe procedures for ensuring compliance with requirements through review and management of submittal process. Indicate qualifications of personnel responsible for submittal review.

- D. Testing and Inspection: In quality-control plan, include a comprehensive schedule of Work requiring testing or inspection, including the following:
 - 1. Contractor-performed tests and inspections including Subcontractor-performed tests and inspections. Include required tests and inspections and Contractor-elected tests and inspections. Distinguish source quality-control tests and inspections from field quality-control tests and inspections.
 - 2. Special inspections required by authorities having jurisdiction and indicated on the Statement of Special Inspections will be conducted by Owner.
 - 3. Owner-performed tests and inspections indicated in the Contract Documents, including tests and inspections indicated to be performed by Commissioning Authority.
- E. Continuous Inspection of Workmanship: Describe process for continuous inspection during construction to identify and correct deficiencies in workmanship in addition to testing and inspection specified. Indicate types of corrective actions to be required to bring work into compliance with standards of workmanship established by Contract requirements and approved mockups.
- F. Monitoring and Documentation: Maintain testing and inspection reports including log of approved and rejected results. Include work Architect has indicated as nonconforming or defective. Indicate corrective actions taken to bring nonconforming work into compliance with requirements. Comply with requirements of authorities having jurisdiction.

1.9 REPORTS AND DOCUMENTS

- A. Test and Inspection Reports: Prepare and submit certified written reports specified in other Sections. Include the following:
 - 1. Date of issue.
 - 2. Project title and number.
 - 3. Name, address, telephone number, and email address of testing agency.
 - 4. Dates and locations of samples and tests or inspections.
 - 5. Names of individuals making tests and inspections.
 - 6. Description of the Work and test and inspection method.
 - 7. Identification of product and Specification Section.
 - 8. Complete test or inspection data.
 - 9. Test and inspection results and an interpretation of test results.
 - 10. Record of temperature and weather conditions at time of sample taking and testing and inspection.
 - 11. Comments or professional opinion on whether tested or inspected Work complies with the Contract Document requirements.
 - 12. Name and signature of laboratory inspector.
 - 13. Recommendations on retesting and re-inspecting.
- B. Manufacturer's Technical Representative's Field Reports: Prepare written information documenting manufacturer's technical representative's tests and inspections specified in other Sections. Include the following:
 - 1. Name, address, telephone number, and email address of technical representative making report.

- 2. Statement on condition of substrates and their acceptability for installation of product.
- 3. Statement that products at Project site comply with requirements.
- 4. Summary of installation procedures being followed, whether they comply with requirements and, if not, what corrective action was taken.
- 5. Results of operational and other tests and a statement of whether observed performance complies with requirements.
- 6. Statement whether conditions, products, and installation will affect warranty.
- 7. Other required items indicated in individual Specification Sections.
- C. Factory-Authorized Service Representative's Reports: Prepare written information documenting manufacturer's factory-authorized service representative's tests and inspections specified in other Sections. Include the following:
 - 1. Name, address, telephone number, and email address of factory-authorized service representative making report.
 - 2. Statement that equipment complies with requirements.
 - 3. Results of operational and other tests and a statement of whether observed performance complies with requirements.
 - 4. Statement whether conditions, products, and installation will affect warranty.
 - 5. Other required items indicated in individual Specification Sections.

1.10 QUALITY ASSURANCE

- A. General: Qualifications paragraphs in this article establish the minimum qualification levels required; individual Specification Sections specify additional requirements.
- B. Manufacturer Qualifications: A firm experienced in manufacturing products or systems similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units. As applicable, procure products from manufacturers able to meet qualification requirements, warranty requirements, and technical or factory-authorized service representative requirements.
- C. Fabricator Qualifications: A firm experienced in producing products similar to those indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to produce required units.
- D. Installer Qualifications: A firm or individual experienced in installing, erecting, applying, or assembling work similar in material, design, and extent to that indicated for this Project, whose work has resulted in construction with a record of successful in-service performance.
- E. Professional Engineer Qualifications: A professional engineer who is legally qualified to practice in jurisdiction where Project is located and who is experienced in providing engineering services of the kind indicated. Engineering services are defined as those performed for installations of the system, assembly, or products which are similar in material, design, and extent to those indicated for this Project.
- F. Testing Agency Qualifications: An NRTL, an NVLAP, or an independent agency with the experience and capability to conduct testing and inspection indicated, as documented according to ASTM E 329; and with additional qualifications specified in individual Sections; and, where required by authorities having jurisdiction, that is acceptable to authorities.

- G. Manufacturer's Technical Representative Qualifications: An authorized representative of manufacturer who is trained and approved by manufacturer to observe and inspect installation of manufacturer's products that are similar in material, design, and extent to those indicated for this Project.
- H. Factory-Authorized Service Representative Qualifications: An authorized representative of manufacturer who is trained and approved by manufacturer to inspect installation of manufacturer's products that are similar in material, design, and extent to those indicated for this Project.
- I. Preconstruction Testing: Where testing agency is indicated to perform preconstruction testing for compliance with specified requirements for performance and test methods, comply with the following:
 - 1. Contractor responsibilities include the following:
 - a. Provide test specimens representative of proposed products and construction.
 - b. Submit specimens in a timely manner with sufficient time for testing and analyzing results to prevent delaying the Work.
 - c. Provide sizes and configurations of test assemblies, mockups, and laboratory mockups to adequately demonstrate capability of products to comply with performance requirements.
 - d. Build site-assembled test assemblies and mockups using installers who will perform same tasks for Project.
 - e. Build laboratory mockups at testing facility using personnel, products, and methods of construction indicated for the completed Work.
 - f. When testing is complete, remove test specimens and test assemblies, and mockups; do not reuse products on Project.
 - 2. Testing Agency Responsibilities: Submit a certified written report of each test, inspection, and similar quality-assurance service to Architect and Commissioning Authority, with copy to Contractor. Interpret tests and inspections and state in each report whether tested and inspected work complies with or deviates from the Contract Documents.
- J. Mockups: Before installing portions of the Work requiring mockups, build mockups for each form of construction and finish required to comply with the following requirements, using materials indicated for the completed Work:
 - 1. Build mockups of size indicated.
 - 2. Build mockups in location indicated or, if not indicated, as directed by Architect.
 - 3. Notify Architect seven days in advance of dates and times when mockups will be constructed.
 - 4. Employ supervisory personnel who will oversee mockup construction. Employ workers that will be employed to perform same tasks during the construction at Project.
 - 5. Demonstrate the proposed range of aesthetic effects and workmanship.
 - 6. Obtain Architect's approval of mockups before starting corresponding work, fabrication, or construction.
 - a. Allow seven days for initial review and each re-review of each mockup.

- 7. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
- K. Integrated Exterior Mockups: Construct integrated exterior mockup according to approved Shop Drawings. Coordinate installation of exterior envelope materials and products for which mockups are required in individual Specification Sections, along with supporting materials. Comply with requirements in "Mockups" Paragraph.

1.11 QUALITY CONTROL

- A. Owner Responsibilities: Where quality-control services are indicated as Owner's responsibility, Owner will engage a qualified testing agency to perform these services.
 - 1. Owner will furnish Contractor with names, addresses, and telephone numbers of testing agencies engaged and a description of types of testing and inspection they are engaged to perform.
 - 2. Payment for these services will be made from testing and inspection allowances, as authorized by Change Orders.
 - 3. Costs for retesting and re-inspecting construction that replaces or is necessitated by work that failed to comply with the Contract Documents will be charged to Contractor.
- B. Contractor Responsibilities: Tests and inspections not explicitly assigned to Owner are Contractor's responsibility. Perform additional quality-control activities, whether specified or not, to verify and document that the Work complies with requirements.
 - 1. Unless otherwise indicated, provide quality-control services specified and those required by authorities having jurisdiction. Perform quality-control services required of Contractor by authorities having jurisdiction, whether specified or not.
 - 2. Engage a qualified testing agency to perform quality-control services.
 - a. Contractor shall not employ same entity engaged by Owner, unless agreed to in writing by Owner.
 - 3. Notify testing agencies at least 24 hours in advance of time when Work that requires testing or inspection will be performed.
 - 4. Where quality-control services are indicated as Contractor's responsibility, submit a certified written report, in duplicate, of each quality-control service.
 - 5. Testing and inspection requested by Contractor and not required by the Contract Documents are Contractor's responsibility.
 - 6. Submit additional copies of each written report directly to authorities having jurisdiction, when they so direct.
- C. Retesting/Re-inspecting: Regardless of whether original tests or inspections were Contractor's responsibility, provide quality-control services, including retesting and re-inspecting, for construction that replaced Work that failed to comply with the Contract Documents.
- D. Testing Agency Responsibilities: Cooperate with Architect, Commissioning Authority and Contractor in performance of duties. Provide qualified personnel to perform required tests and inspections.

- 1. Notify Architect, Commissioning Authority, and Contractor promptly of irregularities or deficiencies observed in the Work during performance of its services.
- 2. Determine the locations from which test samples will be taken and in which in-situ tests are conducted.
- 3. Conduct and interpret tests and inspections and state in each report whether tested and inspected work complies with or deviates from requirements.
- 4. Submit a certified written report, in duplicate, of each test, inspection, and similar qualitycontrol service through Contractor.
- 5. Do not release, revoke, alter, or increase the Contract Document requirements or approve or accept any portion of the Work.
- 6. Do not perform duties of Contractor.
- E. Manufacturer's Field Services: Where indicated, engage a factory-authorized service representative to inspect field-assembled components and equipment installation, including service connections. Report results in writing as specified in Section 013300 "Submittal Procedures."
- F. Manufacturer's Technical Services: Where indicated, engage a manufacturer's technical representative to observe and inspect the Work. Manufacturer's technical representative's services include participation in pre-installation conferences, examination of substrates and conditions, verification of materials, observation of Installer activities, inspection of completed portions of the Work, and submittal of written reports.
- G. Associated Contractor Services: Cooperate with agencies and representatives performing required tests, inspections, and similar quality-control services, and provide reasonable auxiliary services as requested. Notify agency sufficiently in advance of operations to permit assignment of personnel. Provide the following:
 - 1. Access to the Work.
 - 2. Incidental labor and facilities necessary to facilitate tests and inspections.
 - 3. Adequate quantities of representative samples of materials that require testing and inspection. Assist agency in obtaining samples.
 - 4. Facilities for storage and field curing of test samples.
 - 5. Delivery of samples to testing agencies.
 - 6. Preliminary design mix proposed for use for material mixes that require control by testing agency.
 - 7. Security and protection for samples and for testing and inspection equipment at Project site.
- H. Coordination: Coordinate sequence of activities to accommodate required quality-assurance and quality-control services with a minimum of delay and to avoid necessity of removing and replacing construction to accommodate testing and inspection.
 - 1. Schedule times for tests, inspections, obtaining samples, and similar activities.

1.12 SPECIAL TESTS AND INSPECTIONS

A. Special Tests and Inspections: Conducted by a qualified testing agency or special inspector as required by authorities having jurisdiction, as indicated in individual Specification Sections, and as follows:

- 1. Verifying that manufacturer maintains detailed fabrication and quality-control procedures and reviewing the completeness and adequacy of those procedures to perform the Work.
- 2. Notifying Architect, Commissioning Authority, and Contractor promptly of irregularities and deficiencies observed in the Work during performance of its services.
- 3. Submitting a certified written report of each test, inspection, and similar quality-control service to Architect and Commissioning Authority with copy to Contractor and to authorities having jurisdiction.
- 4. Submitting a final report of special tests and inspections at Substantial Completion, that includes a list of unresolved deficiencies.
- 5. Interpreting tests and inspections and stating in each report whether tested and inspected work complies with or deviates from the Contract Documents.
- 6. Retesting and re-inspecting corrected work.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 TEST AND INSPECTION LOG

- A. Test and Inspection Log: Prepare a record of tests and inspections. Include the following:
 - 1. Date test or inspection was conducted.
 - 2. Description of the Work tested or inspected.
 - 3. Date test or inspection results were transmitted to Architect.
 - 4. Identification of testing agency or special inspector conducting test or inspection.
- B. Maintain log at Project site. Post changes and revisions as they occur. Provide access to test and inspection log for Architect's, Commissioning Authority's, reference during normal working hours.
 - 1. Submit log at Project closeout as part of Project Record Documents.

END OF SECTION 014000

SECTION 014200 - REFERENCES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 DEFINITIONS

- A. General: Basic Contract definitions are included in the Conditions of the Contract.
- B. "Approved": When used to convey Architect's action on Contractor's submittals, applications, and requests, "approved" is limited to Architect's duties and responsibilities as stated in the Conditions of the Contract.
- C. "Directed": A command or instruction by Architect. Other terms including "requested," "authorized," "selected," "required," and "permitted" have the same meaning as "directed."
- D. "Indicated": Requirements expressed by graphic representations or in written form on Drawings, in Specifications, and in other Contract Documents. Other terms including "shown," "noted," "scheduled," and "specified" have the same meaning as "indicated."
- E. "Regulations": Laws, ordinances, statutes, and lawful orders issued by authorities having jurisdiction, and rules, conventions, and agreements within the construction industry that control performance of the Work.
- F. "Furnish": Supply and deliver to Project site, ready for unloading, unpacking, assembly, installation, and similar operations.
- G. "Install": Unload, temporarily store, unpack, assemble, erect, place, anchor, apply, work to dimension, finish, cure, protect, clean, and similar operations at Project site.
- H. "Provide": Furnish and install, complete and ready for the intended use.
- I. "Project Site": Space available for performing construction activities. The extent of Project site is shown on Drawings and may or may not be identical with the description of the land on which Project is to be built.

1.3 INDUSTRY STANDARDS

A. Applicability of Standards: Unless the Contract Documents include more stringent requirements, applicable construction industry standards have the same force and effect as if bound or copied directly into the Contract Documents to the extent referenced. Such standards are made a part of the Contract Documents by reference.

B. Publication Dates: Comply with standards in effect as of date of the Contract Documents unless otherwise indicated.

1.4 ABBREVIATIONS AND ACRONYMS

- A. Industry Organizations: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities in the following list. This information is subject to change and is believed to be accurate as of the date of the Contract Documents.
 - 1. AABC Associated Air Balance Council; <u>www.aabc.com</u>.
 - 2. AAMA American Architectural Manufacturers Association; <u>www.aamanet.org</u>.
 - 3. AAPFCO Association of American Plant Food Control Officials; <u>www.aapfco.org</u>.
 - 4. AASHTO American Association of State Highway and Transportation Officials; www.transportation.org.
 - 5. AATCC American Association of Textile Chemists and Colorists; <u>www.aatcc.org</u>.
 - 6. ABMA American Bearing Manufacturers Association; <u>www.americanbearings.org</u>.
 - 7. ABMA American Boiler Manufacturers Association; <u>www.abma.com</u>.
 - 8. ACI American Concrete Institute; (Formerly: ACI International); <u>www.abma.com</u>.
 - 9. ACPA American Concrete Pipe Association; <u>www.concrete-pipe.org</u>.
 - 10. AEIC Association of Edison Illuminating Companies, Inc. (The); <u>www.aeic.org</u>.
 - 11. AF&PA American Forest & Paper Association; www.afandpa.org.
 - 12. AGA American Gas Association; www.aga.org.
 - 13. AHAM Association of Home Appliance Manufacturers; www.aham.org.
 - 14. AHRI Air-Conditioning, Heating, and Refrigeration Institute (The); www.ahrinet.org.
 - 15. AI Asphalt Institute; <u>www.asphaltinstitute.org</u>.
 - 16. AIA American Institute of Architects (The); www.aia.org.
 - 17. AISC American Institute of Steel Construction; www.aisc.org.
 - 18. AISI American Iron and Steel Institute; <u>www.steel.org</u>.
 - 19. AITC American Institute of Timber Construction; <u>www.aitc-glulam.org</u>.
 - 20. AMCA Air Movement and Control Association International, Inc.; www.amca.org.
 - 21. ANSI American National Standards Institute; www.ansi.org.
 - 22. AOSA Association of Official Seed Analysts, Inc.; www.aosaseed.com.
 - 23. APA APA The Engineered Wood Association; <u>www.apawood.org</u>.
 - 24. APA Architectural Precast Association; www.archprecast.org.
 - 25. API American Petroleum Institute; <u>www.api.org</u>.
 - 26. ARI Air-Conditioning & Refrigeration Institute; (See AHRI).
 - 27. ARI American Refrigeration Institute; (See AHRI).
 - 28. ARMA Asphalt Roofing Manufacturers Association; www.asphaltroofing.org.
 - 29. ASCE American Society of Civil Engineers; <u>www.asce.org</u>.
 - 30. ASCE/SEI American Society of Civil Engineers/Structural Engineering Institute; (See ASCE).
 - 31. ASHRAE American Society of Heating, Refrigerating and Air-Conditioning Engineers; <u>www.ashrae.org</u>.
 - 32. ASME ASME International; (American Society of Mechanical Engineers); www.asme.org.
 - 33. ASSE American Society of Safety Engineers (The); www.asse.org.
 - 34. ASSE American Society of Sanitary Engineering; <u>www.asse-plumbing.org</u>.
 - 35. ASTM ASTM International; <u>www.astm.org</u>.

- 36. ATIS Alliance for Telecommunications Industry Solutions; <u>www.atis.org</u>.
- 37. AWEA American Wind Energy Association; <u>www.awea.org</u>.
- 38. AWI Architectural Woodwork Institute; <u>www.awinet.org</u>.
- 39. AWMAC Architectural Woodwork Manufacturers Association of Canada; <u>www.awmac.com</u>.
- 40. AWPA American Wood Protection Association; <u>www.awpa.com</u>.
- 41. AWS American Welding Society; <u>www.aws.org</u>.
- 42. AWWA American Water Works Association; www.awwa.org.
- 43. BHMA Builders Hardware Manufacturers Association; <u>www.buildershardware.com</u>.
- 44. BIA Brick Industry Association (The); www.gobrick.com.
- 45. BICSI BICSI, Inc.; www.bicsi.org.
- 46. BIFMA BIFMA International; (Business and Institutional Furniture Manufacturer's Association); <u>www.bifma.org</u>.
- 47. BISSC Baking Industry Sanitation Standards Committee; www.bissc.org.
- 48. BWF Badminton World Federation; (Formerly: International Badminton Federation); www.bissc.org.
- 49. CDA Copper Development Association; <u>www.copper.org</u>.
- 50. CEA Canadian Electricity Association; www.electricity.ca.
- 51. CEA Consumer Electronics Association; www.ce.org.
- 52. CFFA Chemical Fabrics and Film Association, Inc.; www.chemicalfabricsandfilm.com.
- 53. CFSEI Cold-Formed Steel Engineers Institute; <u>www.cfsei.org</u>.
- 54. CGA Compressed Gas Association; <u>www.cganet.com</u>.
- 55. CIMA Cellulose Insulation Manufacturers Association; www.cellulose.org.
- 56. CISCA Ceilings & Interior Systems Construction Association; <u>www.cisca.org</u>.
- 57. CISPI Cast Iron Soil Pipe Institute; <u>www.cispi.org</u>.
- 58. CLFMI Chain Link Fence Manufacturers Institute; www.chainlinkinfo.org.
- 59. CPA Composite Panel Association; www.pbmdf.com.
- 60. CRI Carpet and Rug Institute (The); www.carpet-rug.org.
- 61. CRRC Cool Roof Rating Council; www.coolroofs.org.
- 62. CRSI Concrete Reinforcing Steel Institute; www.crsi.org.
- 63. CSA Canadian Standards Association; <u>www.csa.ca</u>.
- 64. CSA CSA International; (Formerly: IAS International Approval Services); <u>www.csa-international.org</u>.
- 65. CSI Construction Specifications Institute (The); <u>www.csinet.org</u>.
- 66. CSSB Cedar Shake & Shingle Bureau; <u>www.cedarbureau.org</u>.
- 67. CTI Cooling Technology Institute; (Formerly: Cooling Tower Institute); www.cti.org.
- 68. CWC Composite Wood Council; (See CPA).
- 69. DASMA Door and Access Systems Manufacturers Association; www.dasma.com.
- 70. DHI Door and Hardware Institute; www.dhi.org.
- 71. ECA Electronic Components Association; (See ECIA).
- 72. ECAMA Electronic Components Assemblies & Materials Association; (See ECIA).
- 73. ECIA Electronic Components Industry Association; www.eciaonline.org.
- 74. EIA Electronic Industries Alliance; (See TIA).
- 75. EIMA EIFS Industry Members Association; <u>www.eima.com</u>.
- 76. EJMA Expansion Joint Manufacturers Association, Inc.; www.ejma.org.
- 77. ESD ESD Association; (Electrostatic Discharge Association); www.esda.org.
- 78. ESTA Entertainment Services and Technology Association; (See PLASA).
- 79. EVO Efficiency Valuation Organization; www.evo-world.org.
- 80. FCI Fluid Controls Institute; www.fluidcontrolsinstitute.org.
- 81. FIBA Federation Internationale de Basketball; (The International Basketball Federation); www.fiba.com.

- 82. FIVB Federation Internationale de Volleyball; (The International Volleyball Federation); www.fivb.org.
- 83. FM Approvals FM Approvals LLC; <u>www.fmglobal.com</u>.
- 84. FM Global FM Global; (Formerly: FMG FM Global); www.fmglobal.com.
- 85. FRSA Florida Roofing, Sheet Metal & Air Conditioning Contractors Association, Inc.; <u>www.floridaroof.com</u>.
- 86. FSA Fluid Sealing Association; www.fluidsealing.com.
- 87. FSC Forest Stewardship Council U.S.; <u>www.fscus.org</u>.
- 88. GA Gypsum Association; <u>www.gypsum.org</u>.
- 89. GANA Glass Association of North America; www.glasswebsite.com.
- 90. GS Green Seal; <u>www.greenseal.org</u>.
- 91. HI Hydraulic Institute; <u>www.pumps.org</u>.
- 92. HI/GAMA Hydronics Institute/Gas Appliance Manufacturers Association; (See AHRI).
- 93. HMMA Hollow Metal Manufacturers Association; (See NAAMM).
- 94. HPVA Hardwood Plywood & Veneer Association; www.hpva.org.
- 95. HPW H. P. White Laboratory, Inc.; www.hpwhite.com.
- 96. IAPSC International Association of Professional Security Consultants; <u>www.iapsc.org</u>.
- 97. IAS International Accreditation Service; <u>www.iasonline.org</u>.
- 98. IAS International Approval Services; (See CSA).
- 99. ICBO International Conference of Building Officials; (See ICC).
- 100. ICC International Code Council; <u>www.iccsafe.org</u>.
- 101. ICEA Insulated Cable Engineers Association, Inc.; <u>www.icea.net</u>.
- 102. ICPA International Cast Polymer Alliance; www.icpa-hq.org.
- 103. ICRI International Concrete Repair Institute, Inc.; www.icri.org.
- 104. IEC International Electrotechnical Commission; http://www.iec.ch.
- 105. IEEE Institute of Electrical and Electronics Engineers, Inc. (The); www.ieee.org.
- 106. IES Illuminating Engineering Society; (Formerly: Illuminating Engineering Society of North America); <u>www.ies.org</u>.
- 107. IESNA Illuminating Engineering Society of North America; (See IES).
- 108. IEST Institute of Environmental Sciences and Technology; www.iest.org.
- 109. IGMA Insulating Glass Manufacturers Alliance; www.igmaonline.org.
- 110. IGSHPA International Ground Source Heat Pump Association; www.igshpa.okstate.edu.
- 111. ILI Indiana Limestone Institute of America, Inc.; www.iliai.com.
- 112. Intertek Intertek Group; (Formerly: ETL SEMCO; Intertek Testing Service NA); www.intertek.com.
- 113. ISA International Society of Automation (The); (Formerly: Instrumentation, Systems, and Automation Society); <u>www.isa.org</u>.
- 114. ISAS Instrumentation, Systems, and Automation Society (The); (See ISA).
- 115. ISFA International Surface Fabricators Association; (Formerly: International Solid Surface Fabricators Association); <u>www.isfanow.org</u>.
- 116. ISO International Organization for Standardization; <u>www.iso.org</u>.
- 117. ISSFA International Solid Surface Fabricators Association; (See ISFA).
- 118. ITU International Telecommunication Union; www.itu.int/home.
- 119. KCMA Kitchen Cabinet Manufacturers Association; www.kcma.org.
- 120. LMA Laminating Materials Association; (See CPA).
- 121. LPI Lightning Protection Institute; <u>www.lightning.org</u>.
- 122. MBMA Metal Building Manufacturers Association; www.mbma.com.
- 123. MCA Metal Construction Association; www.metalconstruction.org.
- 124. MFMA Maple Flooring Manufacturers Association, Inc.; www.maplefloor.org.
- 125. MFMA Metal Framing Manufacturers Association, Inc.; www.metalframingmfg.org.
- 126. MHIA Material Handling Industry of America; <u>www.mhia.org</u>.

- 127. MIA Marble Institute of America; www.marble-institute.com.
- 128. MMPA Moulding & Millwork Producers Association; www.wmmpa.com.
- 129. MPI Master Painters Institute; www.paintinfo.com.
- 130. MSS Manufacturers Standardization Society of The Valve and Fittings Industry Inc.; <u>www.mss-hq.org</u>.
- 131. NAAMM National Association of Architectural Metal Manufacturers; www.naamm.org.
- 132. NACE NACE International; (National Association of Corrosion Engineers International); www.nace.org.
- 133. NADCA National Air Duct Cleaners Association; www.nadca.com.
- 134. NAIMA North American Insulation Manufacturers Association; www.naima.org.
- 135. NBGQA National Building Granite Quarries Association, Inc.; www.nbgqa.com.
- 136. NBI New Buildings Institute; www.newbuildings.org.
- 137. NCAA National Collegiate Athletic Association (The); www.ncaa.org.
- 138. NCMA National Concrete Masonry Association; www.ncma.org.
- 139. NEBB National Environmental Balancing Bureau; www.nebb.org.
- 140. NECA National Electrical Contractors Association; www.necanet.org.
- 141. NeLMA Northeastern Lumber Manufacturers Association; www.nelma.org.
- 142. NEMA National Electrical Manufacturers Association; www.nema.org.
- 143. NETA InterNational Electrical Testing Association; www.netaworld.org.
- 144. NFHS National Federation of State High School Associations; www.nfhs.org.
- 145. NFPA National Fire Protection Association; www.nfpa.org.
- 146. NFPA NFPA International; (See NFPA).
- 147. NFRC National Fenestration Rating Council; <u>www.nfrc.org</u>.
- 148. NHLA National Hardwood Lumber Association; <u>www.nhla.com</u>.
- 149. NLGA National Lumber Grades Authority; www.nlga.org.
- 150. NOFMA National Oak Flooring Manufacturers Association; (See NWFA).
- 151. NOMMA National Ornamental & Miscellaneous Metals Association; www.nomma.org.
- 152. NRCA National Roofing Contractors Association; <u>www.nrca.net</u>.
- 153. NRMCA National Ready Mixed Concrete Association; www.nrmca.org.
- 154. NSF NSF International; <u>www.nsf.org</u>.
- 155. NSPE National Society of Professional Engineers; <u>www.nspe.org</u>.
- 156. NSSGA National Stone, Sand & Gravel Association; www.nssga.org.
- 157. NTMA National Terrazzo & Mosaic Association, Inc. (The); www.ntma.com.
- 158. NWFA National Wood Flooring Association; www.nwfa.org.
- 159. PCI Precast/Prestressed Concrete Institute; www.pci.org.
- 160. PDI Plumbing & Drainage Institute; www.pdionline.org.
- 161. PLASA PLASA; (Formerly: ESTA Entertainment Services and Technology Association); www.plasa.org.
- 162. RCSC Research Council on Structural Connections; www.boltcouncil.org.
- 163. RFCI Resilient Floor Covering Institute; <u>www.rfci.com</u>.
- 164. RIS Redwood Inspection Service; www.redwoodinspection.com.
- 165. SAE SAE International; www.sae.org.
- 166. SCTE Society of Cable Telecommunications Engineers; www.scte.org.
- 167. SDI Steel Deck Institute; www.sdi.org.
- 168. SDI Steel Door Institute; www.steeldoor.org.
- 169. SEFA Scientific Equipment and Furniture Association (The); www.sefalabs.com.
- 170. SEI/ASCE Structural Engineering Institute/American Society of Civil Engineers; (See ASCE).
- 171. SIA Security Industry Association; www.siaonline.org.
- 172. SJI Steel Joist Institute; www.steeljoist.org.
- 173. SMA Screen Manufacturers Association; www.smainfo.org.

- 174. SMACNA Sheet Metal and Air Conditioning Contractors' National Association; www.smacna.org.
- 175. SMPTE Society of Motion Picture and Television Engineers; <u>www.smpte.org</u>.
- 176. SPFA Spray Polyurethane Foam Alliance; <u>www.sprayfoam.org</u>.
- 177. SPIB Southern Pine Inspection Bureau; <u>www.spib.org</u>.
- 178. SPRI Single Ply Roofing Industry; <u>www.spri.org</u>.
- 179. SRCC Solar Rating & Certification Corporation; <u>www.solar-rating.org</u>.
- 180. SSINA Specialty Steel Industry of North America; www.ssina.com.
- 181. SSPC SSPC: The Society for Protective Coatings; <u>www.sspc.org</u>.
- 182. STI Steel Tank Institute; <u>www.steeltank.com</u>.
- 183. SWI Steel Window Institute; www.steelwindows.com.
- 184. SWPA Submersible Wastewater Pump Association; www.swpa.org.
- 185. TCA Tilt-Up Concrete Association; www.tilt-up.org.
- 186. TCNA Tile Council of North America, Inc.; <u>www.tileusa.com</u>.
- 187. TEMA Tubular Exchanger Manufacturers Association, Inc.; www.tema.org.
- 188. TIA Telecommunications Industry Association (The); (Formerly: TIA/EIA Telecommunications Industry Association/Electronic Industries Alliance); www.tiaonline.org.
- 189. TIA/EIA Telecommunications Industry Association/Electronic Industries Alliance; (See TIA).
- 190. TMS The Masonry Society; <u>www.masonrysociety.org</u>.
- 191. TPI Truss Plate Institute; <u>www.tpinst.org</u>.
- 192. TPI Turfgrass Producers International; <u>www.turfgrasssod.org</u>.
- 193. TRI Tile Roofing Institute; www.tileroofing.org.
- 194. UL Underwriters Laboratories Inc.; <u>www.ul.com</u>.
- 195. UNI Uni-Bell PVC Pipe Association; www.uni-bell.org.
- 196. USAV USA Volleyball; <u>www.usavolleyball.org</u>.
- 197. USGBC U.S. Green Building Council; www.usgbc.org.
- 198. USITT United States Institute for Theatre Technology, Inc.; www.usitt.org.
- 199. WASTEC Waste Equipment Technology Association; www.wastec.org.
- 200. WCLIB West Coast Lumber Inspection Bureau; <u>www.wclib.org</u>.
- 201. WCMA Window Covering Manufacturers Association; <u>www.wcmanet.org</u>.
- 202. WDMA Window & Door Manufacturers Association; www.wdma.com.
- 203. WI Woodwork Institute; <u>www.wicnet.org</u>.
- 204. WSRCA Western States Roofing Contractors Association; www.wsrca.com.
- 205. WWPA Western Wood Products Association; <u>www.wwpa.org</u>.
- B. Code Agencies: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities in the following list. This information is believed to be accurate as of the date of the Contract Documents.
 - 1. DIN Deutsches Institut fur Normung e.V.; <u>www.din.de</u>.
 - 2. IAPMO International Association of Plumbing and Mechanical Officials; <u>www.iapmo.org</u>.
 - 3. ICC International Code Council; <u>www.iccsafe.org</u>.
 - 4. ICC-ES ICC Evaluation Service, LLC; <u>www.icc-es.org</u>.
- C. Federal Government Agencies: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the entities in the following list. Information is subject to change and is up to date as of the date of the Contract Documents.

- 1. COE Army Corps of Engineers; <u>www.usace.army.mil</u>.
- 2. CPSC Consumer Product Safety Commission; <u>www.cpsc.gov</u>.
- 3. DOC Department of Commerce; National Institute of Standards and Technology; <u>www.nist.gov</u>.
- 4. DOD Department of Defense; <u>www.quicksearch.dla.mil</u>.
- 5. DOE Department of Energy; <u>www.energy.gov</u>.
- 6. EPA Environmental Protection Agency; <u>www.epa.gov</u>.
- 7. FAA Federal Aviation Administration; <u>www.faa.gov</u>.
- 8. FG Federal Government Publications; <u>www.gpo.gov/fdsys</u>.
- 9. GSA General Services Administration; <u>www.gsa.gov</u>.
- 10. HUD Department of Housing and Urban Development; <u>www.hud.gov</u>.
- 11. LBL Lawrence Berkeley National Laboratory; Environmental Energy Technologies Division; <u>www.eetd.lbl.gov</u>.
- 12. OSHA Occupational Safety & Health Administration; <u>www.osha.gov</u>.
- 13. SD Department of State; <u>www.state.gov</u>.
- 14. TRB Transportation Research Board; National Cooperative Highway Research Program; The National Academies; <u>www.trb.org</u>.
- 15. USDA Department of Agriculture; Agriculture Research Service; U.S. Salinity Laboratory; <u>www.ars.usda.gov</u>.
- 16. USDA Department of Agriculture; Rural Utilities Service; <u>www.usda.gov</u>.
- 17. USDOJ Department of Justice; Office of Justice Programs; National Institute of Justice; <u>www.ojp.usdoj.gov</u>.
- 18. USP U.S. Pharmacopeial Convention; <u>www.usp.org</u>.
- 19. USPS United States Postal Service; <u>www.usps.com</u>.
- D. Standards and Regulations: Where abbreviations and acronyms are used in Specifications or other Contract Documents, they shall mean the recognized name of the standards and regulations in the following list. This information is subject to change and is believed to be accurate as of the date of the Contract Documents.
 - 1. CFR Code of Federal Regulations; Available from Government Printing Office; <u>www.gpo.gov/fdsys</u>.
 - 2. DOD Department of Defense; Military Specifications and Standards; Available from DLA Document Services; <u>www.quicksearch.dla.mil</u>.
 - 3. DSCC Defense Supply Center Columbus; (See FS).
 - 4. FED-STD Federal Standard; (See FS).
 - 5. FS Federal Specification; Available from DLA Document Services; www.quicksearch.dla.mil.
 - a. Available from Defense Standardization Program; <u>www.dsp.dla.mil</u>.
 - b. Available from General Services Administration; <u>www.gsa.gov</u>.
 - c. Available from National Institute of Building Sciences/Whole Building Design Guide; <u>www.wbdg.org/ccb</u>.
 - 6. MILSPEC Military Specification and Standards; (See DOD).
 - 7. USAB United States Access Board; <u>www.access-board.gov</u>.
 - 8. USATBCB U.S. Architectural & Transportation Barriers Compliance Board; (See USAB).

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 014200

SECTION 016000 - PRODUCT REQUIREMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for selection of products for use in Project; product delivery, storage, and handling; manufacturers' standard warranties on products; special warranties; and comparable products.
- B. Related Requirements:
 - 1. Section 012500 "Substitution Procedures" for requests for substitutions.
 - 2. Section 014200 "References" for applicable industry standards for products specified.

1.3 DEFINITIONS

- A. Products: Items obtained for incorporating into the Work, whether purchased for Project or taken from previously purchased stock. The term "product" includes the terms "material," "equipment," "system," and terms of similar intent.
 - 1. Named Products: Items identified by manufacturer's product name, including make or model number or other designation shown or listed in manufacturer's published product literature that is current as of date of the Contract Documents.
 - 2. New Products: Items that have not previously been incorporated into another project or facility. Products salvaged or recycled from other projects are not considered new products.
 - 3. Comparable Product: Product that is demonstrated and approved by Architect through submittal process to have the indicated qualities related to type, function, dimension, inservice performance, physical properties, appearance, and other characteristics that equal or exceed those of specified product.
- B. Basis-of-Design Product Specification: A specification in which a single manufacturer's product is named and accompanied by the words "basis-of-design product," including make or model number or other designation. In addition to the basis-of-design product description, product attributes and characteristics may be listed to establish the significant qualities related to type, function, in-service performance and physical properties, weight, dimension, durability, visual characteristics, and other special features and requirements for purposes of evaluating comparable products of additional manufacturers named in the specification.
- C. Subject to Compliance with Requirements: Where the phrase "Subject to compliance with requirements" introduces a product selection procedure in an individual Specification Section, provide products qualified under the specified product procedure. In the event that a named

product or product by a named manufacturer does not meet the other requirements of the specifications, select another named product or product from another named manufacturer that does meet the requirements of the specifications. Submit a comparable product request, if applicable.

1.4 ACTION SUBMITTALS

- A. Comparable Product Request Submittal: Submit request for consideration of each comparable product. Identify basis-of-design product or fabrication or installation method to be replaced. Include Specification Section number and title and Drawing numbers and titles.
 - 1. Include data to indicate compliance with the requirements specified in "Comparable Products" Article.
 - 2. Architect's Action: If necessary, Architect will request additional information or documentation for evaluation within seven days of receipt of a comparable product request. Architect will notify Contractor of approval or rejection of proposed comparable product request within 15 days of receipt of request, or seven days of receipt of additional information or documentation, whichever is later.
 - a. Form of Architect's Approval of Submittal: As specified in Section 013300 "Submittal Procedures."
 - b. Use product specified if Architect does not issue a decision on use of a comparable product request within time allocated.
- B. Basis-of-Design Product Specification Submittal: Comply with requirements in Section 013300 "Submittal Procedures." Show compliance with requirements.

1.5 QUALITY ASSURANCE

- A. Compatibility of Options: If Contractor is given option of selecting between two or more products for use on Project, select product compatible with products previously selected, even if previously selected products were also options.
- B. Identification of Products: Except for required labels and operating data, do not attach or imprint manufacturer or product names or trademarks on exposed surfaces of products or equipment that will be exposed to view in occupied spaces or on the exterior.
 - 1. Labels: Locate required product labels and stamps on a concealed surface, or, where required for observation following installation, on a visually accessible surface that is not conspicuous.
 - 2. Equipment Nameplates: Provide a permanent nameplate on each item of service-connected or power-operated equipment. Locate on a visually accessible but inconspicuous surface. Include information essential for operation, including the following:
 - a. Name of product and manufacturer.
 - b. Model and serial number.
 - c. Capacity.
 - d. Speed.
 - e. Ratings.

3. See individual identification sections in Divisions 21, 22, 23, and 26 for additional identification requirements.

1.6 PRODUCT DELIVERY, STORAGE, AND HANDLING

- A. Deliver, store, and handle products using means and methods that will prevent damage, deterioration, and loss, including theft and vandalism. Comply with manufacturer's written instructions.
- B. Delivery and Handling:
 - 1. Schedule delivery to minimize long-term storage at Project site and to prevent overcrowding of construction spaces.
 - 2. Coordinate delivery with installation time to ensure minimum holding time for items that are flammable, hazardous, easily damaged, or sensitive to deterioration, theft, and other losses.
 - 3. Deliver products to Project site in an undamaged condition in manufacturer's original sealed container or other packaging system, complete with labels and instructions for handling, storing, unpacking, protecting, and installing.
 - 4. Inspect products on delivery to determine compliance with the Contract Documents and to determine that products are undamaged and properly protected.
- C. Storage:
 - 1. Store products to allow for inspection and measurement of quantity or counting of units.
 - 2. Store materials in a manner that will not endanger Project structure.
 - 3. Store products that are subject to damage by the elements, under cover in a weather-tight enclosure above ground, with ventilation adequate to prevent condensation.
 - 4. Protect foam plastic from exposure to sunlight, except to extent necessary for period of installation and concealment.
 - 5. Comply with product manufacturer's written instructions for temperature, humidity, ventilation, and weather-protection requirements for storage.
 - 6. Protect stored products from damage and liquids from freezing.
 - 7. Provide a secure location and enclosure at Project site for storage of materials and equipment by Owner's construction forces. Coordinate location with Owner.

1.7 PRODUCT WARRANTIES

- A. Warranties specified in other Sections shall be in addition to, and run concurrent with, other warranties required by the Contract Documents. Manufacturer's disclaimers and limitations on product warranties do not relieve Contractor of obligations under requirements of the Contract Documents.
 - 1. Manufacturer's Warranty: Written warranty furnished by individual manufacturer for a particular product and specifically endorsed by manufacturer to Owner.
 - 2. Special Warranty: Written warranty required by the Contract Documents to provide specific rights for Owner.

- B. Special Warranties: Prepare a written document that contains appropriate terms and identification, ready for execution.
 - 1. Manufacturer's Standard Form: Modified to include Project-specific information and properly executed.
 - 2. Specified Form: When specified forms are included with the Specifications, prepare a written document using indicated form properly executed.
 - 3. See other Sections for specific content requirements and particular requirements for submitting special warranties.
- C. Submittal Time: Comply with requirements in Section 017700 "Closeout Procedures."

PART 2 - PRODUCTS

2.1 PRODUCT SELECTION PROCEDURES

- A. General Product Requirements: Provide products that comply with the Contract Documents, are undamaged and, unless otherwise indicated, are new at time of installation.
 - 1. Provide products complete with accessories, trim, finish, fasteners, and other items needed for a complete installation and indicated use and effect.
 - 2. Standard Products: If available, and unless custom products or nonstandard options are specified, provide standard products of types that have been produced and used successfully in similar situations on other projects.
 - 3. Owner reserves the right to limit selection to products with warranties meeting requirements of the Contract Documents.
 - 4. Where products are accompanied by the term "as selected," Architect will make selection.
 - 5. Descriptive, performance, and reference standard requirements in the Specifications establish salient characteristics of products.
- B. Product Selection Procedures:
 - 1. Sole Product: Where Specifications name a single manufacturer and product, provide the named product that complies with requirements. Comparable products or substitutions for Contractor's convenience will not be considered.
 - a. Sole product may be indicated by the phrase: "Subject to compliance with requirements, provide the following: ..."
 - 2. Sole Manufacturer/Source: Where Specifications name a single manufacturer or source, provide a product by the named manufacturer or source that complies with requirements. Comparable products or substitutions for Contractor's convenience will not be considered.
 - a. Sole manufacturer/source may be indicated by the phrase: "Subject to compliance with requirements, provide products by the following: ..."
 - 3. Limited List of Products: Where Specifications include a list of names of both manufacturers and products, provide one of the products listed that complies with

requirements. Comparable products or substitutions for Contractor's convenience will be considered unless otherwise indicated.

- a. Limited list of products may be indicated by the phrase: "Subject to compliance with requirements, provide one of the following: ..."
- 4. Non-Limited List of Products: Where Specifications include a list of names of both available manufacturers and products, provide one of the products listed, or an unnamed product, which complies with requirements.
 - a. Non-limited list of products is indicated by the phrase: "Subject to compliance with requirements, available products that may be incorporated in the Work include, but are not limited to, the following: ..."
- 5. Limited List of Manufacturers: Where Specifications include a list of manufacturers' names, provide a product by one of the manufacturers listed that complies with requirements. Comparable products or substitutions for Contractor's convenience will not be considered unless otherwise indicated.
 - a. Limited list of manufacturers is indicated by the phrase: "Subject to compliance with requirements, provide products by one of the following: ..."
- 6. Non-Limited List of Manufacturers: Where Specifications include a list of available manufacturers, provide a product by one of the manufacturers listed, or a product by an unnamed manufacturer, which complies with requirements.
 - a. Non-limited list of manufacturers is indicated by the phrase: "Subject to compliance with requirements, available manufacturers whose products may be incorporated in the Work include, but are not limited to, the following: ..."
- 7. Basis-of-Design Product: Where Specifications name a product, or refer to a product indicated on Drawings, and include a list of manufacturers, provide the specified or indicated product or a comparable product by one of the other named manufacturers. Drawings and Specifications indicate sizes, profiles, dimensions, and other characteristics that are based on the product named. Comply with requirements in "Comparable Products" Article for consideration of an unnamed product by one of the other named manufacturers.
 - a. For approval of products by unnamed manufacturers, comply with requirements in Section 012500 "Substitution Procedures" for substitutions for convenience.
- C. Visual Matching Specification: Where Specifications require "match Architect's sample," provide a product that complies with requirements and matches Architect's sample. Architect's decision will be final on whether a proposed product matches.
 - 1. If no product available within specified category matches and complies with other specified requirements, comply with requirements in Section 012500 "Substitution Procedures" for proposal of product.
- D. Visual Selection Specification: Where Specifications include the phrase "as selected by Architect from manufacturer's full range" or similar phrase, select a product that complies with

requirements. Architect will select color, gloss, pattern, density, or texture from manufacturer's product line that includes both standard and premium items.

2.2 COMPARABLE PRODUCTS

- A. Conditions for Consideration of Comparable Products: Architect will consider Contractor's request for comparable product when the following conditions are satisfied. If the following conditions are not satisfied, Architect may return requests without action, except to record noncompliance with these requirements:
 - 1. Evidence that proposed product does not require revisions to the Contract Documents, is consistent with the Contract Documents, will produce the indicated results, and is compatible with other portions of the Work. Detailed comparison of significant qualities of proposed product with those named in the Specifications. Significant product qualities include attributes such as type, function, in-service performance and physical properties, weight, dimension, durability, visual characteristics, and other specific features and requirements.
 - 2. Evidence that proposed product provides specified warranty.
 - 3. List of similar installations for completed projects with project names and addresses and names and addresses of architects and owners, if requested.
 - 4. Samples, if requested.
- B. Submittal Requirements: Approval by the Architect of Contractor's request for use of comparable product is not intended to satisfy other submittal requirements. Comply with specified submittal requirements.

PART 3 - EXECUTION (Not Used)

END OF SECTION 016000

SECTION 017419 - CONSTRUCTION WASTE MANAGEMENT AND DISPOSAL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for the following:
 - 1. Recycling nonhazardous demolition and construction waste.
 - 2. Disposing of nonhazardous demolition and construction waste.

1.3 DEFINITIONS

- A. Construction Waste: Building and site improvement materials and other solid waste resulting from construction, remodeling, renovation, or repair operations. Construction waste includes packaging.
- B. Demolition Waste: Building and site improvement materials resulting from demolition or selective demolition operations.
- C. Disposal: Removal off-site of demolition and construction waste and subsequent sale, recycling, reuse, or deposit in landfill or incinerator acceptable to authorities having jurisdiction.
- D. Recycle: Recovery of demolition or construction waste for subsequent processing in preparation for reuse.

1.4 ACTION SUBMITTALS

- A. Waste Management Plan: Submit plan within 30 days of date established for commencement of the Work.
- B. Reports: Submit monthly documentation to Owner with each Application for Payment prior to Substantial Completion substantiating that Waste Management Plan was maintained and that goals were achieved.
 - 1. Trash: Quantity by weight deposited in landfills. Include associated fees, transportation costs, container rentals, and taxes for total cost of disposal.
 - 2. Salvaged Material: Quantity by weight or quantity with destination for each type of material salvaged for resale, recycling, or adaptive reuse. Include associated fees, transportation costs, container rentals, and taxes for total cost of disposal. Also, include reimbursements due to salvage resale.

3. Total Cost: Indicate total cost or savings for implementation of Waste Management Plan. This does not imply reimbursement by Owner.

1.5 QUALITY ASSURANCE

A. Regulatory Requirements: Comply with hauling and disposal regulations of authorities having jurisdiction.

1.6 WASTE MANAGEMENT PLAN

- A. Waste Management Plan: Include the following information
 - 1. Analysis of the trash and waste projected to be generated during the entire project construction cycle, including types and quantities.
 - 2. Landfill Options: The name, address, and telephone number of the landfill(s) where trash/waste will be disposed of, the applicable landfill tipping fee(s), and the projected cost of disposing of all project trash/waste in the landfill(s).
 - 3. Landfill Alternatives: List all waste materials that will be diverted from landfills by reuse, salvage, or recycling.
 - 4. Meetings: Describe regular meetings to be held to address waste prevention, reduction, recycling, salvage, reuse, and disposal.
 - 5. Materials Handling Procedures: Describe the means by which materials to be diverted from landfills will be protected from contamination and prepared for acceptance by designated facilities; include separation procedures for recyclables, storage, and packaging.
 - 6. Transportation: Identify the destination and means of transportation of materials to be recycled; i.e. whether materials will be site-separated and self-hauled to designated centers, or whether mixed materials will be collected by a waste hauler.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 PLAN IMPLEMENTATION

- A. General: Implement approved waste management plan. Provide handling, containers, storage, signage, transportation, and other items as required to implement waste management plan during the entire duration of the Contract.
 - 1. Comply with operation, termination, and removal requirements in Section 015000 "Temporary Facilities and Controls."
- B. Site Access and Temporary Controls: Conduct waste management operations to ensure minimum interference with roads, streets, walks, walkways, and other adjacent occupied and used facilities.
 - 1. Designate and label specific areas on Project site necessary for separating materials that are to be salvaged, recycled, reused, donated, and sold.

2. Comply with Section 015000 "Temporary Facilities and Controls" for controlling dust and dirt, environmental protection, and noise control.

3.2 RECYCLING

- A. Use Source Separation Method or Co-Mingling Method suitable to sorting and processing method of selected recycling center. Dispose non-recyclable trash separately into landfill.
 - 1. Source Separation Method: Recyclable materials separated from trash and sorted into bins or containers prior to transportation to recycling center.
 - 2. Co-Mingling Method: Recyclable materials separated from trash and placed in unsorted bins or container for sorting at recycling center.
- B. Materials suggested for recycling include:
 - 1. Packing materials including paper, cardboard, foam plastic, and sheeting.
 - 2. Recyclable plastics.
 - 3. Organic plant debris.
 - 4. Earth materials.
 - 5. Native stone and granular fill.
 - 6. Asphalt and paving.
 - 7. Wood.
 - 8. Glass.
 - 9. Metals.
 - 10. Gypsum products.
 - 11. Acoustical ceiling tile.
 - 12. Carpet.
 - 13. Equipment oil.

3.3 DISPOSAL OF WASTE

- A. General: Except for items or materials to be salvaged, recycled, or otherwise reused, remove waste materials from Project site and legally dispose of them in a landfill or incinerator acceptable to authorities having jurisdiction.
 - 1. Contractor will be responsible for disposing of any equipment in the existing buildings not scheduled to be salvaged to the owner.
 - 2. Contractor will be responsible for disposing of remaining school portable units if present.
 - 3. Except as otherwise specified, do not allow waste materials that are to be disposed of accumulate on-site.
 - 4. Remove and transport debris in a manner that will prevent spillage on adjacent surfaces and areas.
- B. Burning: Do not burn waste materials.
- C. Burying: Do not bury waste materials.
- D. Disposal: Remove waste materials and dispose of at designated spoil areas on Owner's property.

E. Disposal: Remove waste materials from Owner's property and legally dispose of them.

END OF SECTION 017419

SECTION 017700 - CLOSEOUT PROCEDURES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for contract closeout, including, but not limited to, the following:
 - 1. Substantial Completion procedures.
 - 2. Final completion procedures.
 - 3. Warranties.
 - 4. Final cleaning.
 - 5. Repair of the Work.
- B. Related Requirements:
 - 1. Section 017823 "Operation and Maintenance Data" for additional operation and maintenance manual requirements.
 - 2. Section 017839 "Project Record Documents" for submitting Record Drawings, Record Specifications, and Record Product Data.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of cleaning agent.
- B. Contractor's List of Incomplete Items: Initial submittal at Substantial Completion.
- C. Certified List of Incomplete Items: Final submittal at final completion.

1.4 CLOSEOUT SUBMITTALS

- A. Certificates of Release: From authorities having jurisdiction.
- B. Certificate of Insurance: For continuing coverage.
- C. Field Report: For pest control inspection.

1.5 MAINTENANCE MATERIAL SUBMITTALS

A. Schedule of Maintenance Material Items: For maintenance material submittal items specified in other Sections.

1.6 SUBSTANTIAL COMPLETION PROCEDURES

- A. Contractor's List of Incomplete Items: Prepare and submit a list of items to be completed and corrected (Contractor's punch list), indicating the value of each item on the list and reasons why the Work is incomplete.
- B. Inspection: Submit a written request for inspection to determine Substantial Completion a minimum of 10 days prior to date the Work will be completed and ready for final inspection and tests. On receipt of request, Architect will either proceed with inspection or notify Contractor of unfulfilled requirements. Architect will prepare the Certificate of Substantial Completion after inspection or will notify Contractor of items, either on Contractor's list or additional items identified by Architect, that must be completed or corrected before certificate will be issued.
 - 1. Request re-inspection when the Work identified in previous inspections as incomplete is completed or corrected.
 - 2. Results of completed inspection will form the basis of requirements for final completion.

1.7 FINAL COMPLETION PROCEDURES

- A. Submittals Prior to Final Completion: Before requesting final inspection for determining final completion, complete the following:
 - 1. Certificates of Release: Obtain and submit releases from authorities having jurisdiction permitting Owner unrestricted use of the Work and access to services and utilities. Include occupancy permits, operating certificates, and similar releases.
 - 2. Submit closeout submittals specified in other Division 01 Sections, including project record documents, operation and maintenance manuals, damage or settlement surveys, property surveys, and similar final record information.
 - 3. Submit closeout submittals specified in individual Sections, including specific warranties, workmanship bonds, maintenance service agreements, final certifications, and similar documents.
 - 4. Submit maintenance material submittals specified in individual Sections, including tools, spare parts, extra materials, and similar items, and deliver to location designated by Architect. Label with manufacturer's name and model number.
 - a. Schedule of Maintenance Material Items: Prepare and submit schedule of maintenance material submittal items, including name and quantity of each item and name and number of related Specification Section. Obtain Owner's signature for receipt of submittals.
 - 5. Submit testing, adjusting, and balancing records.
 - 6. Submit changeover information related to Owner's occupancy, use, operation, and maintenance.

- 7. Submit a final Application for Payment according to Section 012900 "Payment Procedures."
- 8. Certified List of Incomplete Items: Submit certified copy of Architect's Substantial Completion inspection list of items to be completed or corrected (punch list), endorsed and dated by Architect. Certified copy of the list shall state that each item has been completed or otherwise resolved for acceptance.
- 9. Certificate of Insurance: Submit evidence of final, continuing insurance coverage complying with insurance requirements.
- 10. Submit pest-control final inspection report.
- 11. Submit final completion photographic documentation.
- B. Procedures Prior to Final Completion: Complete the following a minimum of 10 days prior to requesting inspection for determining date of Substantial Completion. List items below that are incomplete at time of request.
 - 1. Advise Owner of pending insurance changeover requirements.
 - 2. Make final changeover of permanent locks and deliver keys to Owner. Advise Owner's personnel of changeover in security provisions.
 - 3. Complete startup and testing of systems and equipment.
 - 4. Perform preventive maintenance on equipment used prior to Substantial Completion.
 - 5. Instruct Owner's personnel in operation, adjustment, and maintenance of products, equipment, and systems. Submit demonstration and training video recordings specified in Section 017900 "Demonstration and Training."
 - 6. Advise Owner of changeover in utility services.
 - 7. Participate with Owner in conducting inspection and walkthrough with local emergency responders.
 - 8. Terminate and remove temporary facilities from Project site, along with mockups, construction tools, and similar elements.
 - 9. Complete final cleaning requirements.
 - 10. Touch up paint and otherwise repair and restore marred exposed finishes to eliminate visual defects.
- C. Inspection: Submit a written request for final inspection to determine acceptance a minimum of 10 days prior to date the work will be completed and ready for final inspection and tests. On receipt of request, Architect will either proceed with inspection or notify Contractor of unfulfilled requirements. Architect will prepare a final Certificate for Payment after inspection or will notify Contractor of construction that must be completed or corrected before certificate will be issued.
 - 1. Request re-inspection when the Work identified in previous inspections as incomplete is completed or corrected.

1.8 LIST OF INCOMPLETE ITEMS (PUNCH LIST)

- A. Organization of List: Include name and identification of each space and area affected by construction operations for incomplete items and items needing correction including, if necessary, areas disturbed by Contractor that are outside the limits of construction.
 - 1. Organize list of spaces in sequential order, starting with exterior areas first and proceeding from lowest floor to highest floor.

- 2. Organize items applying to each space by major element, including categories for ceiling, individual walls, floors, equipment, and building systems.
- 3. Include the following information at the top of each page:
 - a. Project name.
 - b. Date.
 - c. Name of Architect.
 - d. Name of Contractor.
 - e. Page number.
- 4. Submit list of incomplete items in the following format:
 - a. MS Excel electronic file. Architect will return annotated file.
 - b. Web-based project software upload. Utilize software feature for creating and updating list of incomplete items (punch list).

1.9 SUBMITTAL OF PROJECT WARRANTIES

- A. Time of Submittal: Submit written warranties on request of Architect for designated portions of the Work where warranties are indicated to commence on dates other than date of Substantial Completion, or when delay in submittal of warranties might limit Owner's rights under warranty.
- B. Partial Occupancy: Submit properly executed warranties within 15 days of completion of designated portions of the Work that are completed and occupied or used by Owner during construction period by separate agreement with Contractor.
- C. Organize warranty documents into an orderly sequence based on the table of contents of Project Manual.
- D. Warranty Electronic File: Provide warranties and bonds in PDF format. Assemble complete warranty and bond submittal package into an individual electronic PDF files corresponding to specification section numbers.
 - 1. Submit by uploading to web-based project software site.
- E. Warranties in Paper Form:
 - 1. Bind warranties and bonds in heavy-duty, three-ring, vinyl-covered, loose-leaf binders, thickness as necessary to accommodate contents, and sized to receive 8-1/2-by-11-inch paper.
 - 2. Provide heavy paper dividers with plastic-covered tabs for each separate warranty. Mark tab to identify the product or installation. Provide a typed description of the product or installation, including the name of the product and the name, address, and telephone number of Installer.
 - 3. Identify each binder on the front and spine with the typed or printed title "WARRANTIES," Project name, and name of Contractor.
- F. Provide additional copies of each warranty to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Cleaning Agents: Use cleaning materials and agents recommended by manufacturer or fabricator of the surface to be cleaned. Do not use cleaning agents that are potentially hazardous to health or property or that might damage finished surfaces.

PART 3 - EXECUTION

3.1 FINAL CLEANING

- A. General: Perform final cleaning. Conduct cleaning and waste-removal operations to comply with local laws and ordinances and Federal and local environmental and antipollution regulations.
- B. Cleaning: Employ experienced workers or professional cleaners for final cleaning. Clean each surface or unit to condition expected in an average commercial building cleaning and maintenance program. Comply with manufacturer's written instructions.
 - 1. Complete the following cleaning operations before requesting inspection for certification of Substantial Completion for entire Project or for a designated portion of Project:
 - a. Clean Project site, yard, and grounds, in areas disturbed by construction activities, including landscape development areas, of rubbish, waste material, litter, and other foreign substances.
 - b. Sweep paved areas broom clean. Remove petrochemical spills, stains, and other foreign deposits.
 - c. Rake grounds that are not planted, mulched, or paved to a smooth, even-textured surface.
 - d. Remove tools, construction equipment, machinery, and surplus material from Project site.
 - e. Remove snow and ice to provide safe access to building.
 - f. Clean exposed exterior and interior hard-surfaced finishes to a dirt-free condition, free of stains, films, and similar foreign substances. Avoid disturbing natural weathering of exterior surfaces. Restore reflective surfaces to their original condition.
 - g. Remove debris and surface dust from limited access spaces, including roofs, plenums, shafts, trenches, equipment vaults, manholes, attics, and similar spaces.
 - h. Sweep concrete floors broom clean in unoccupied spaces.
 - i. Vacuum carpet and similar soft surfaces, removing debris and excess nap; clean according to manufacturer's recommendations if visible soil or stains remain.
 - j. Clean transparent materials, including mirrors and glass in doors and windows. Remove glazing compounds and other noticeable, vision-obscuring materials. Polish mirrors and glass, taking care not to scratch surfaces.
 - k. Remove labels that are not permanent.
 - 1. Wipe surfaces of mechanical and electrical equipment, elevator equipment, and similar equipment. Remove excess lubrication, paint and mortar droppings, and other foreign substances.

- m. Clean plumbing fixtures to a sanitary condition, free of stains, including stains resulting from water exposure.
- n. Replace disposable air filters and clean permanent air filters. Clean exposed surfaces of diffusers, registers, and grills.
- o. Clean ducts, blowers, and coils if units were operated without filters during construction or that display contamination with particulate matter on inspection.
- p. Clean light fixtures, lamps, globes, and reflectors to function with full efficiency.
- q. Leave Project clean and ready for occupancy.
- C. Pest Control: Comply with pest control requirements in Section 015000 "Temporary Facilities and Controls." Prepare written report.
- D. Construction Waste Disposal: Comply with Owner waste disposal.

3.2 REPAIR OF THE WORK

- A. Complete repair and restoration operations before requesting inspection for determination of Substantial Completion.
- B. Repair, or remove and replace, defective construction. Repairing includes replacing defective parts, refinishing damaged surfaces, touching up with matching materials, and properly adjusting operating equipment. Where damaged or worn items cannot be repaired or restored, provide replacements. Remove and replace operating components that cannot be repaired. Restore damaged construction and permanent facilities used during construction to specified condition.
 - 1. Remove and replace chipped, scratched, and broken glass, reflective surfaces, and other damaged transparent materials.
 - 2. Touch up and otherwise repair and restore marred or exposed finishes and surfaces. Replace finishes and surfaces that that already show evidence of repair or restoration.
 - a. Do not paint over "UL" and other required labels and identification, including mechanical and electrical nameplates. Remove paint applied to required labels and identification.
 - 3. Replace parts subject to operating conditions during construction that may impede operation or reduce longevity.
 - 4. Replace burned-out bulbs, bulbs noticeably dimmed by hours of use, and defective and noisy starters in fluorescent and mercury vapor fixtures to comply with requirements for new fixtures.

END OF SECTION 017700

SECTION 017823 - OPERATION AND MAINTENANCE DATA

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for preparing operation and maintenance manuals, including the following:
 - 1. Operations Maintenance Manual:
 - a. Emergency manuals.
 - b. Systems and equipment operation manuals.
 - c. Systems and equipment maintenance manuals.
 - d. Product maintenance manuals.
- B. Related Requirements:
 - 1. Section 013300 "Submittal Procedures" for submitting copies of submittals for operation and maintenance manuals.
 - 2. Section 019113 "General Commissioning Requirements" for verification and compilation of data into operation and maintenance manuals.

1.3 DEFINITIONS

- A. System: An organized collection of parts, equipment, or subsystems united by regular interaction.
- B. Subsystem: A portion of a system with characteristics similar to a system.

1.4 CLOSEOUT SUBMITTALS

- A. Submit operation and maintenance manuals indicated. Provide content for each manual as specified in individual Specification Sections, and as reviewed and approved at the time of Section submittals. Submit reviewed manual content formatted and organized as required by this Section.
 - 1. Submit a closeout submittal log listing all required closeout submittals, listed by Specifications section numbers.
 - 2. Architect, BSD, and Commissioning Authority will comment on whether content of operation and maintenance submittals is acceptable.

- 3. Where applicable, clarify and update reviewed manual content to correspond to revisions and field conditions.
- B. Format: Submit operation and maintenance manuals in the following format:
 - 1. Initial Electronic Submittal Review: Submit by uploading to web-based project software site, eBuilder process called "CLOP." Enable reviewer comments on draft submittals.
 - 2. BSD will not accept any hardcopy documents until initial electronic review has been completed.
- C. Initial Manual Submittal: Submit draft copy of each manual at least 10 days before commencing demonstration and training. Architect, BSD and Commissioning Authority will comment on whether general scope and content of manual are acceptable.
- D. Final Manual Submittal: Submit each manual in final form prior to requesting inspection for Substantial Completion Prior to final completion.
 - 1. Correct or revise each manual to comply with Architect's, BSD's and Commissioning Authority's comments. Submit copies of each corrected manual within 15 days of receipt of Architect's, BSD's and Commissioning Authority's comments and prior to commencing demonstration and training.
- E. Comply with Section 017700 "Closeout Procedures" for schedule for submitting operation and maintenance documentation.

1.5 FORMAT OF OPERATION AND MAINTENANCE MANUALS

- A. Manuals, Electronic Files: Submit manuals in the form of a multiple file composite electronic keyword searchable PDF file for each manual type required.
 - 1. Electronic Files: Use electronic files prepared by manufacturer where available. Where scanning of paper documents is required, configure scanned file for minimum readable file size.
 - 2. For each specification section, provide 1 PDF containing all Product Data and 1 PDF containing the Warranty. Place PDFs into files named according to CSI format
 - 3. Submit all documents by uploading to web-based project software site.
- B. Manuals, Paper Copy: Submit manuals in the form of hard-copy, bound and labeled volumes.
 - 1. Binders: Heavy-duty, three-ring, vinyl-covered, loose-leaf binders, in thickness necessary to accommodate contents, sized to hold 8-1/2-by-11-inch paper; with clear plastic sleeve on spine to hold label describing contents and with pockets inside covers to hold folded oversize sheets.
 - a. Identify each binder on front and spine, with printed title "OPERATION AND MAINTENANCE MANUAL," Project title or name, and subject matter of contents, and indicate Specification Section number on bottom of spine. Indicate volume number for multiple-volume sets.

- b. Submit 1 copy of the Operation and Maintenance Manual and 1 copy of the Warranty Binder.
- 2. Dividers: Heavy-paper dividers with plastic-covered tabs for each section of the manual. Mark each tab to indicate contents. Include typed list of products and major components of equipment included in the section on each divider, cross-referenced to Specification Section number and title of Project Manual.
- 3. Protective Plastic Sleeves: Transparent plastic sleeves designed to enclose diagnostic software storage media for computerized electronic equipment. Enclose title pages and directories in clear plastic sleeves.
- 4. Supplementary Text: Prepared on 8-1/2-by-11-inch white bond paper.
- 5. Drawings: Attach reinforced, punched binder tabs on drawings and bind with text.
 - a. If oversize drawings are necessary, fold drawings to same size as text pages and use as foldouts.
 - b. If drawings are too large to be used as foldouts, fold and place drawings in labeled envelopes and bind envelopes in rear of manual. At appropriate locations in manual, insert typewritten pages indicating drawing titles, descriptions of contents, and drawing locations.

1.6 REQUIREMENTS FOR OPERATION, AND MAINTENANCE MANUALS

- A. Organization of Manual: Unless otherwise indicated, organize single manual. The manual shall contain the following materials, in the order listed:
 - 1. Title page.
 - 2. Table of contents.
 - 3. Manual contents.
 - a. Contact list.
 - b. Certificate of Substantial Completion (AIA G704-2000).
 - c. Contractor's Statement of Warranty.
 - d. Lead & Asbestos Free Certification Letter.
 - e. Certificate of Occupancy.
 - f. Final Permit Inspection Approvals.
 - g. Operation & Maintenance Data (including shop drawings, where applicable) and Warranties organized by specification sections chronological order and named according to CSI Format.
- B. Title Page: Include the following information:
 - 1. Subject matter included in manual.
 - 2. Name and address of Project.
 - 3. Name and address of Owner.
 - 4. Date of submittal.
 - 5. Name and contact information for Contractor.
 - 6. Name and contact information for Construction Manager.
 - 7. Name and contact information for Architect.
 - 8. Name and contact information for Commissioning Authority.

- 9. Names and contact information for major consultants to the Architect that designed the systems contained in the manuals.
- 10. Cross-reference to related systems in other operation and maintenance manuals.
- C. Table of Contents: List each product included in manual, identified by product name, indexed to the content of the volume, and cross-referenced to Specification Section number in Project Manual.
- D. Manual Contents: Arrange contents by specification sections chronological order. If possible, assemble instructions for subsystems, equipment, and components of one system into a single file.

1.7 SYSTEMS AND EQUIPMENT OPERATION MANUALS

- A. Systems and Equipment Operation Manual: Assemble a complete set of data indicating operation of each system, subsystem, and piece of equipment not part of a system. Include information required for daily operation and management, operating standards, and routine and special operating procedures.
 - 1. Engage a factory-authorized service representative to assemble and prepare information for each system, subsystem, and piece of equipment not part of a system.
 - 2. Prepare a separate manual for each system and subsystem, in the form of an instructional manual for use by Owner's operating personnel.
- B. Content: In addition to requirements in this Section, include operation data required in individual Specification Sections and the following information:
 - 1. System, subsystem, and equipment descriptions. Use designations for systems and equipment indicated on Contract Documents.
 - 2. Performance and design criteria if Contractor has delegated design responsibility.
 - 3. Operating standards.
 - 4. Operating procedures.
 - 5. Operating logs.
 - 6. Wiring diagrams.
 - 7. Control diagrams.
 - 8. Piped system diagrams.
 - 9. Precautions against improper use.
 - 10. License requirements including inspection and renewal dates.
- C. Descriptions: Include the following:
 - 1. Product name and model number. Use designations for products indicated on Contract Documents.
 - 2. Manufacturer's name.
 - 3. Equipment identification with serial number of each component.
 - 4. Equipment function.
 - 5. Operating characteristics.
 - 6. Limiting conditions.
 - 7. Performance curves.
 - 8. Engineering data and tests.

- 9. Complete nomenclature and number of replacement parts.
- D. Operating Procedures: Include the following, as applicable:
 - 1. Startup procedures.
 - 2. Equipment or system break-in procedures.
 - 3. Routine and normal operating instructions.
 - 4. Regulation and control procedures.
 - 5. Instructions on stopping.
 - 6. Normal shutdown instructions.
 - 7. Seasonal and weekend operating instructions.
 - 8. Required sequences for electric or electronic systems.
 - 9. Special operating instructions and procedures.
- E. Systems and Equipment Controls: Describe the sequence of operation, and diagram controls as installed.
- F. Piped Systems: Diagram piping as installed and, identify color coding where required for identification.

1.8 SYSTEMS AND EQUIPMENT MAINTENANCE MANUALS

- A. Systems and Equipment Maintenance Manuals: Assemble a complete set of data indicating maintenance of each system, subsystem, and piece of equipment not part of a system. Include manufacturers' maintenance documentation, preventive maintenance procedures and frequency, repair procedures, wiring and systems diagrams, lists of spare parts, and warranty information.
 - 1. Engage a factory-authorized service representative to assemble and prepare information for each system, subsystem, and piece of equipment not part of a system.
 - 2. Prepare a separate manual for each system and subsystem, in the form of an instructional manual for use by Owner's operating personnel.
- B. Content: For each system, sub-system, and piece of equipment not part of a system, include source information, manufacturers' maintenance documentation, maintenance procedures, maintenance and service schedules, spare parts list and source information, maintenance service contracts, and warranties and bonds as described below.
- C. Source Information: List each system, sub-system, and piece of equipment included in the manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual and drawing or schedule designation or identifier where applicable.
- D. Manufacturers' Maintenance Documentation: Include the following information for each component part or piece of equipment:
 - 1. Standard maintenance instructions and bulletins; include only sheets pertinent to product or component installed. Mark each sheet to identify each product or component incorporated into the Work. If data include more than one item in a tabular format, identify

each item using appropriate references from the Contract Documents. Identify data applicable to the Work and delete references to information not applicable.

- a. Prepare supplementary text if manufacturers' standard printed data are not available and where the information is necessary for proper operation and maintenance of equipment or systems.
- 2. Drawings, diagrams, and instructions required for maintenance, including disassembly and component removal, replacement, and assembly.
- 3. Identification and nomenclature of parts and components.
- 4. List of items recommended to be stocked as spare parts.
- E. Maintenance Procedures: Include the following information and items that detail essential maintenance procedures:
 - 1. Test and inspection instructions.
 - 2. Troubleshooting guide.
 - 3. Precautions against improper maintenance.
 - 4. Disassembly; component removal, repair, and replacement; and reassembly instructions.
 - 5. Aligning, adjusting, and checking instructions.
 - 6. Demonstration and training video recording, if available.
- F. Maintenance and Service Schedules: Include service and lubrication requirements, list of required lubricants for equipment, and separate schedules for preventive and routine maintenance and service with standard time allotment.
 - 1. Scheduled Maintenance and Service: Tabulate actions for daily, weekly, monthly, quarterly, semiannual, and annual frequencies.
 - 2. Maintenance and Service Record: Include manufacturers' forms for recording maintenance.
- G. Spare Parts List and Source Information: Include lists of replacement and repair parts, with parts identified and cross-referenced to manufacturers' maintenance documentation and local sources of maintenance materials and related services.
- H. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.
 - 1. Include procedures to follow and required notifications for warranty claims.
- I. Drawings: Prepare drawings supplementing manufacturers' printed data to illustrate the relationship of component parts of equipment and systems and to illustrate control sequence and flow diagrams. Coordinate these drawings with information contained in record Drawings to ensure correct illustration of completed installation.
 - 1. Do not use original project record documents as part of maintenance manuals.

1.9 PRODUCT MAINTENANCE MANUALS

A. Product Maintenance Manual: Assemble a complete set of maintenance data indicating care and maintenance of each product, material, and finish incorporated into the Work.

- B. Content: Organize manual into a separate section for each product, material, and finish. Include source information, product information, maintenance procedures, repair materials and sources, and warranties and bonds, as described below.
- C. Source Information: List each product included in manual, identified by product name and arranged to match manual's table of contents. For each product, list name, address, and telephone number of Installer or supplier and maintenance service agent, and cross-reference Specification Section number and title in Project Manual and drawing or schedule designation or identifier where applicable.
- D. Product Information: Include the following, as applicable:
 - 1. Product name and model number.
 - 2. Manufacturer's name.
 - 3. Color, pattern, and texture.
 - 4. Material and chemical composition.
 - 5. Reordering information for specially manufactured products.
- E. Maintenance Procedures: Include manufacturer's written recommendations and the following:
 - 1. Inspection procedures.
 - 2. Types of cleaning agents to be used and methods of cleaning.
 - 3. List of cleaning agents and methods of cleaning detrimental to product.
 - 4. Schedule for routine cleaning and maintenance.
 - 5. Repair instructions.
- F. Repair Materials and Sources: Include lists of materials and local sources of materials and related services.
- G. Warranties and Bonds: Include copies of warranties and bonds and lists of circumstances and conditions that would affect validity of warranties or bonds.
 - 1. Include procedures to follow and required notifications for warranty claims.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 017823

SECTION 017839 - PROJECT RECORD DOCUMENTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes administrative and procedural requirements for project record documents, including the following:
 - 1. Record Drawings.
 - 2. Record Specifications.
 - 3. Record Product Data.
 - 4. Miscellaneous record submittals.
- B. Related Requirements:
 - 1. Section 017700 "Closeout Procedures" for general closeout procedures.
 - 2. Section 017823 "Operation and Maintenance Data" for operation and maintenance manual requirements.

1.3 PRELIMINARY CLOSEOUT SUBMITTALS

- A. Submit to the Owner the following for review:
 - 1. Revit model detailed to LOD 300.
 - 2. CAD files & X-refs (i.e. Landscape dwgs).
 - 3. Draft Operations and Maintenance Manual.

1.4 CLOSEOUT SUBMITTALS

- A. Upload to owner web-based program: O&M Manual; Specs; Revit model; DWG files; pdfs of Record Drawings, Redline Drawings (scanned if necessary) and Permit Drawings (scanned) also submit by uploading to web-based project software site.
- B. Permit Drawing Set (original stamp, signature, & date).
- C. One (1) hard copy of Record Drawings.
- D. One (1) copy O&M Manual 3-Ring Binders including:
 - 1. Table of Contents.

- 2. Contact list.
- 3. Certificate of Substantial Completion (AIA G704-2000).
- 4. Lead & Asbestos Free Certification Letter.
- 5. Certificate of Occupancy.
- 6. Final Permit Inspection Approvals.
- 7. Operation & Maintenance Data (including shop drawings, where applicable) and Warranties organized logically by CSI division.
- 8. Warranties.
- E. Miscellaneous Record Submittals: See other Specification Sections for miscellaneous recordkeeping requirements and submittals in connection with various construction activities. Submit annotated PDF electronic files and directories of each submittal.

1.5 RECORD DRAWINGS

- A. Record Prints: Maintain one set of marked-up paper copies of the Contract Drawings and Shop Drawings, incorporating new and revised drawings as modifications are issued.
 - 1. Preparation: Mark record prints to show the actual installation where installation varies from that shown originally. Require individual or entity who obtained record data, whether individual or entity is Installer, subcontractor, or similar entity, to provide information for preparation of corresponding marked-up record prints.
 - a. Give particular attention to information on concealed elements that would be difficult to identify or measure and record later.
 - b. Accurately record information in an acceptable drawing technique.
 - c. Record data as soon as possible after obtaining it.
 - d. Record and check the markup before enclosing concealed installations.
 - e. Cross-reference record prints to corresponding photographic documentation.
 - 2. Content: Types of items requiring marking include, but are not limited to, the following:
 - a. Dimensional changes to Drawings.
 - b. Revisions to details shown on Drawings.
 - c. Depths of foundations.
 - d. Locations and depths of underground utilities.
 - e. Revisions to routing of piping and conduits.
 - f. Revisions to electrical circuitry.
 - g. Actual equipment locations.
 - h. Duct size and routing.
 - i. Locations of concealed internal utilities.
 - j. Changes made by Change Order or Construction Change Directive.
 - k. Changes made following Architect's written orders.
 - 1. Details not on the original Contract Drawings.
 - m. Field records for variable and concealed conditions.
 - n. Record information on the Work that is shown only schematically.
 - 3. Mark the Contract Drawings and Shop Drawings completely and accurately. Use personnel proficient at recording graphic information in production of marked-up record prints.

- 4. Mark record sets with erasable, red-colored pencil. Use other colors to distinguish between changes for different categories of the Work at same location.
- 5. Mark important additional information that was either shown schematically or omitted from original Drawings.
- 6. Note Construction Change Directive numbers, alternate numbers, Change Order numbers, and similar identification, where applicable.
- B. Record Digital Data Files: Immediately before inspection for Certificate of Substantial Completion, review marked-up record prints with Architect. When authorized, prepare a full set of corrected digital data files of the Contract Drawings, as follows:
 - 1. Format: Annotated PDF electronic file with comment function enabled Via USB Drive.
 - 2. Incorporate changes and additional information previously marked on record prints. Delete, redraw, and add details and notations where applicable.
 - 3. Refer instances of uncertainty to Architect for resolution.
 - 4. Architect will furnish Contractor with one set of digital data files of the Contract Drawings for use in recording information.
 - a. See Section 013100 "Project Management and Coordination" for requirements related to use of Architect's digital data files.
 - b. Architect will provide data file layer information. Record markups in separate layers.
- C. Format: Identify and date each record Drawing; include the designation "PROJECT RECORD DRAWING" in a prominent location.
 - 1. Record Prints: Organize record prints into manageable sets. Bind each set with durable paper cover sheets. Include identification on cover sheets.
 - 2. Format: Annotated PDF electronic file with comment function enabled via USB Drive.
 - 3. Record Digital Data Files: Organize digital data information into separate electronic files that correspond to each sheet of the Contract Drawings. Name each file with the sheet identification. Include identification in each digital data file.
 - 4. Identification: As follows:
 - a. Project name.
 - b. Date.
 - c. Designation "PROJECT RECORD DRAWINGS."
 - d. Name of Architect.
 - e. Name of Contractor.

1.6 RECORD SPECIFICATIONS

- A. Preparation: Mark Specifications to indicate the actual product installation where installation varies from that indicated in Specifications, addenda, and contract modifications.
 - 1. Give particular attention to information on concealed products and installations that cannot be readily identified and recorded later.
 - 2. Note related Change Orders and record Drawings where applicable.

B. Format: Submit record Specifications as annotated PDF electronic file via USB drive and upload to web-based project software site.

1.7 RECORD PRODUCT DATA

- A. Recording: Maintain one copy of each submittal during the construction period for project record document purposes. Post changes and revisions to project record documents as they occur; do not wait until end of Project.
- B. Preparation: Mark Product Data to indicate the actual product installation where installation varies substantially from that indicated in Product Data submittal.
 - 1. Give particular attention to information on concealed products and installations that cannot be readily identified and recorded later.
 - 2. Include significant changes in the product delivered to Project site and changes in manufacturer's written instructions for installation.
 - 3. Note related Change Orders, record Specifications, and record Drawings where applicable.
- C. Format: Submit record Product Data as annotated PDF electronic file via USB Drive.
 - 1. Include record Product Data directory organized by Specification Section number and title, electronically linked to each item of record Product Data.

1.8 MISCELLANEOUS RECORD SUBMITTALS

- A. Assemble miscellaneous records required by other Specification Sections for miscellaneous record keeping and submittal in connection with actual performance of the Work. Bind or file miscellaneous records and identify each, ready for continued use and reference.
- B. Format: Submit miscellaneous record submittals as PDF electronic file via USB Drive.
 - 1. Include miscellaneous record submittals directory organized by Specification Section number and title, electronically linked to each item of miscellaneous record submittals.

1.9 MAINTENANCE OF RECORD DOCUMENTS

A. Maintenance of Record Documents: Store record documents in the field office apart from the Contract Documents used for construction. Do not use project record documents for construction purposes. Maintain record documents in good order and in a clean, dry, legible condition, protected from deterioration and loss. Provide access to project record documents for Architect's reference during normal working hours.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION (Not Used)

END OF SECTION 017839

SECTION 024119 - SELECTIVE DEMOLITION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Demolition and removal of selected site elements.
- B. Related Requirements:
 - 1. Section 011000 "Summary" for restrictions on use of the premises, Owner-occupancy requirements, and phasing requirements.

1.3 DEFINITIONS

- A. Remove: Detach items from existing construction and dispose of them off-site unless indicated to be salvaged or reinstalled.
- B. Existing to Remain: Leave existing items that are not to be removed and that are not otherwise indicated to be salvaged or reinstalled.

1.4 MATERIALS OWNERSHIP

- A. Unless otherwise indicated, demolition waste becomes property of Contractor.
- B. Historic items, relics, antiques, and similar objects including, but not limited to, cornerstones and their contents, commemorative plaques and tablets, and other items of interest or value to Owner that may be uncovered during demolition remain the property of Owner.
 - 1. Carefully salvage in a manner to prevent damage and promptly return to Owner.

1.5 PREINSTALLATION MEETINGS

- A. Predemolition Conference: Conduct conference at Project site.
 - 1. Inspect and discuss condition of construction to be selectively demolished.
 - 2. Review structural load limitations of existing structure.

- 3. Review and finalize selective demolition schedule and verify availability of materials, demolition personnel, equipment, and facilities needed to make progress and avoid delays.
- 4. Review requirements of work performed by other trades that rely on substrates exposed by selective demolition operations.
- 5. Review areas where existing construction is to remain and requires protection.

1.6 INFORMATIONAL SUBMITTALS

- A. Schedule of Selective Demolition Activities: Indicate the following:
 - 1. Interruption of utility services. Indicate how long utility services will be interrupted.
 - 2. Coordination for shutoff, capping, and continuation of utility services.

1.7 FIELD CONDITIONS

- A. Conditions existing at time of inspection for bidding purpose will be maintained by Owner as far as practical.
- B. Notify Architect of discrepancies between existing conditions and Drawings before proceeding with selective demolition.
- C. Hazardous Materials: It is not expected that hazardous materials will be encountered in the Work.
 - 1. If suspected hazardous materials are encountered, do not disturb; immediately notify Architect and Owner. Hazardous materials will be removed by Owner under a separate contract.
- D. Storage or sale of removed items or materials on-site is not permitted.
- E. Utility Service: Maintain existing utilities indicated to remain in service and protect them against damage during selective demolition operations.
 - 1. Maintain fire-protection facilities in service during selective demolition operations.

1.8 COORDINATION

A. Arrange selective demolition schedule so as not to interfere with Owner's operations.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Regulatory Requirements: Comply with governing EPA notification regulations before beginning selective demolition. Comply with hauling and disposal regulations of authorities having jurisdiction.
- B. Standards: Comply with ASSE A10.6 and NFPA 241.

SELECTIVE DEMOLITION

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify that utilities have been disconnected and capped before starting selective demolition operations.
- B. Review Project Record Documents of existing construction or other existing condition and hazardous material information provided by Owner. Owner does not guarantee that existing conditions are same as those indicated in Project Record Documents.

3.2 UTILITY SERVICES AND MECHANICAL/ELECTRICAL SYSTEMS

- A. Existing Services/Systems to Remain: Maintain services/systems indicated to remain and protect them against damage.
- B. Existing Services/Systems to Be Removed, Relocated, or Abandoned: Locate, identify, disconnect, and seal or cap off utility services and mechanical/electrical systems serving areas to be selectively demolished.
 - 1. Owner will arrange to shut off indicated services/systems when requested by Contractor.
 - 2. Arrange to shut off utilities with utility companies.
 - 3. If services/systems are required to be removed, relocated, or abandoned, provide temporary services/systems that bypass area of selective demolition and that maintain continuity of services/systems to other parts of building.
 - 4. Disconnect, demolish, and remove fire-suppression systems, plumbing, and HVAC systems, equipment, and components indicated on Drawings to be removed.
 - a. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material.
 - b. Piping to Be Abandoned in Place: Drain piping and cap or plug piping with same or compatible piping material and leave in place.

3.3 SELECTIVE DEMOLITION, GENERAL

- A. General: Demolish and remove existing construction only to the extent required by new construction and as indicated. Use methods required to complete the Work within limitations of governing regulations and as follows:
 - 1. Proceed with selective utility demolition systematically, from the existing on-site structures to the off-site connection points.
 - 2. Dispose of demolished items and materials promptly. Comply with requirements in Section 017419 "Construction Waste Management and Disposal.
- B. Site Access and Temporary Controls: Conduct selective demolition and debris-removal operations to ensure minimum interference with roads, streets, walks, walkways, and other adjacent occupied and used facilities.

C. Existing Items to Remain: Protect construction indicated to remain against damage and soiling during selective demolition. When permitted by Architect, items may be removed to a suitable, protected storage location during selective demolition and cleaned and reinstalled in their original locations after selective demolition operations are complete.

3.4 DISPOSAL OF DEMOLISHED MATERIALS

- A. Remove demolition waste materials from Project site and recycle or dispose of them according to Section 017419 "Construction Waste Management and Disposal.
 - 1. Do not allow demolished materials to accumulate on-site.
 - 2. Remove and transport debris in a manner that will prevent spillage on adjacent surfaces and areas.
 - 3. Remove debris from elevated portions of building by chute, hoist, or other device that will convey debris to grade level in a controlled descent.
 - 4. Comply with requirements specified in Section 017419 "Construction Waste Management and Disposal."
- B. Burning: Do not burn demolished materials.

3.5 CLEANING

A. Clean adjacent structures and improvements of dust, dirt, and debris caused by selective demolition operations. Return adjacent areas to condition existing before selective demolition operations began.

3.6 SELECTIVE DEMOLITION SCHEDULE

A. Remove: existing on-site overhead power and power poles, on-site storm and storm drain appurtenances, public storm catch basins, on-site sanitary sewer.

END OF SECTION 024119

SECTION 033000 - CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes cast-in-place concrete, including formwork, reinforcement, concrete materials, mixture design, placement procedures, and finishes.
- B. Related Requirements:
 - 1. Division 21 Division 28 for coordination of MEP penetrations.
 - 2. Division 32 for concrete pavement and walks.

1.3 DEFINITIONS

- A. Cementitious Materials: Portland cement alone or in combination with one or more of the following: blended hydraulic cement, fly ash, slag cement, other pozzolans, and silica fume; materials subject to compliance with requirements.
- B. W/C Ratio: The ratio by weight of water to cementitious materials.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Design Mixtures: For each concrete mixture. Submit alternate design mixtures when characteristics of materials, Project conditions, weather, test results, or other circumstances warrant adjustments.
 - 1. Indicate amounts of mixing water to be withheld for later addition at Project site.
- C. Steel Reinforcement Shop Drawings: Placing Drawings that detail fabrication, bending, and placement. Include bar sizes, lengths, material, grade, bar schedules, stirrup spacing, bent bar diagrams, bar arrangement, splices and laps, mechanical connections, tie spacing, hoop spacing, and supports for concrete reinforcement.
- D. Construction Joint Layout: Indicate proposed construction joints required to construct the structure.
 - 1. Location of construction joints is subject to approval of the Architect.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For installer.
- B. Welding certificates.
- C. Material Certificates: For each of the following, signed by manufacturers:
 - 1. Cementitious materials.
 - 2. Admixtures.
 - 3. Form materials and form-release agents.
 - 4. Steel reinforcement and accessories.
 - 5. Fiber reinforcement
 - 6. Waterstops.
 - 7. Curing compounds.
 - 8. Floor and slab treatments.
 - 9. Vapor barrier.
 - 10. Semirigid joint filler.
 - 11. Joint-filler strips.
- D. Material Test Reports: For the following, from a qualified testing agency:
 - 1. Aggregates: Include service record data indicating absence of deleterious expansion of concrete due to alkali aggregate reactivity.
- E. Floor surface flatness and levelness measurements indicating compliance with specified tolerances.
- F. Field quality-control reports.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications: A qualified installer who employs on Project personnel qualified as ACIcertified Flatwork Technician and Finisher and a supervisor who is an ACI-certified Concrete Flatwork Technician.
- B. Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products and that complies with ASTM C 94/C 94M requirements for production facilities and equipment.
 - 1. Manufacturer certified according to NRMCA's "Certification of Ready Mixed Concrete Production Facilities."
- C. Testing Agency Qualifications: An independent agency acceptable to authorities having jurisdiction and qualified according to ASTM C 1077 and ASTM E 329 for testing indicated.
- D. Welding Qualifications: Qualify procedures and personnel according to AWS D1.4/D 1.4M.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Steel Reinforcement: Deliver, store, and handle steel reinforcement to prevent bending and damage.
- B. Waterstops: Store waterstops under cover to protect from moisture, sunlight, dirt, oil, and other contaminants.

1.8 FIELD CONDITIONS

- A. Cold-Weather Placement: Comply with ACI 306.1 and as follows. Protect concrete work from physical damage or reduced strength that could be caused by frost, freezing actions, or low temperatures.
 - 1. When average high and low temperature is expected to fall below 40 deg F for three successive days, maintain delivered concrete mixture temperature within the temperature range required by ACI 301.
 - 2. Do not use frozen materials or materials containing ice or snow. Do not place concrete on frozen subgrade or on subgrade containing frozen materials.
 - 3. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators unless otherwise specified and approved in mixture designs.
- B. Hot-Weather Placement: Comply with ACI 301 and as follows:
 - 1. Maintain concrete temperature below 90 deg F at time of placement. Chilled mixing water or chopped ice may be used to control temperature, provided water equivalent of ice is calculated to total amount of mixing water. Using liquid nitrogen to cool concrete is Contractor's option.
 - 2. Fog-spray forms, steel reinforcement, and subgrade just before placing concrete. Keep subgrade uniformly moist without standing water, soft spots, or dry areas.

PART 2 - PRODUCTS

2.1 FORM-FACING MATERIALS

- A. Smooth-Formed Finished Concrete: Form-facing panels that provide continuous, true, and smooth concrete surfaces. Furnish in largest practicable sizes to minimize number of joints.
 - 1. Plywood, metal, or other approved panel materials.
- B. Rough-Formed Finished Concrete: Plywood, lumber, metal, or another approved material. Provide lumber dressed on at least two edges and one side for tight fit.
- C. Chamfer Strips: Wood, metal, PVC, or rubber strips, 3/4 by 3/4 inch (19 by 19 mm), minimum.

- D. Form-Release Agent: Commercially formulated form-release agent that does not bond with, stain, or adversely affect concrete surfaces and does not impair subsequent treatments of concrete surfaces.
 - 1. Formulate form-release agent with rust inhibitor for steel form-facing materials.
- E. Form Ties: Factory-fabricated, removable or snap-off glass-fiber-reinforced plastic or metal form ties designed to resist lateral pressure of fresh concrete on forms and to prevent spalling of concrete on removal.
 - 1. Furnish units that leave no corrodible metal closer than 1 inch (25 mm) to the plane of exposed concrete surface.
 - 2. Furnish ties that, when removed, leave holes no larger than 1 inch (25 mm) in diameter in concrete surface.
 - 3. Furnish ties with integral water-barrier plates to walls indicated to receive dampproofing or waterproofing.

2.2 STEEL REINFORCEMENT

- A. Reinforcing Bars: ASTM A 615/A 615M, Grade 60, deformed.
- B. Low-Alloy-Steel Reinforcing Bars: ASTM A 706/A 706M, deformed.
- C. Plain-Steel Welded-Wire Reinforcement: ASTM A 1064/A 1064M, plain, fabricated from asdrawn steel wire into flat sheets.

2.3 REINFORCEMENT ACCESSORIES

- A. Joint Dowel Bars: ASTM A 615/A 615M, Grade 60 (Grade 420), plain-steel bars, cut true to length with ends square and free of burrs.
- B. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars and welded-wire reinforcement in place. Manufacture bar supports from steel wire, plastic, or precast concrete according to CRSI's "Manual of Standard Practice," of greater compressive strength than concrete and as follows:
 - 1. For concrete surfaces exposed to view, where legs of wire bar supports contact forms, use CRSI Class 1 plastic-protected steel wire or CRSI Class 2 stainless-steel bar supports.

2.4 CONCRETE MATERIALS

- A. Source Limitations: Obtain each type or class of cementitious material of the same brand from the same manufacturer's plant, obtain aggregate from single source, and obtain admixtures from single source from single manufacturer.
- B. Cementitious Materials:
 - 1. Portland Cement: ASTM C 150/C 150M, Type I/II, gray or white.
 - 2. Fly Ash: ASTM C 618, Class F or C.

- C. Normal-Weight Aggregates: ASTM C 33/C 33M, Class 3M coarse aggregate or better, graded. Provide aggregates from a single source with documented service record data of at least 10 years' satisfactory service in similar applications and service conditions using similar aggregates and cementitious materials.
 - 1. Maximum Coarse-Aggregate Size: 3/4-inch (25 mm) nominal.
- D. Air-Entraining Admixture: ASTM C 260/C 260M.
- E. Chemical Admixtures: Certified by manufacturer to be compatible with other admixtures and that do not contribute water-soluble chloride ions exceeding those permitted in hardened concrete. Do not use calcium chloride or admixtures containing calcium chloride.
 - 1. Water-Reducing Admixture: ASTM C 494/C 494M, Type A.
 - 2. Retarding Admixture: ASTM C 494/C 494M, Type B.
 - 3. Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type D.
 - 4. High-Range, Water-Reducing Admixture: ASTM C 494/C 494M, Type F.
 - 5. High-Range, Water-Reducing and Retarding Admixture: ASTM C 494/C 494M, Type G.
 - 6. Plasticizing and Retarding Admixture: ASTM C 1017/C 1017M, Type II.
- F. Water: ASTM C 94/C 94M and potable.

2.5 FIBER REINFORCEMENT

- A. Synthetic Micro-Fiber: Monofilament polypropylene micro-fibers engineered and designed for use in concrete, complying with ASTM C 1116/C 1116M, Type III.
 - 1. ABC Polymer Industries, LLC; FiberForce 300 (aka, Fibril-Tuf).

2.6 WATERSTOPS

- A. Flexible Rubber Waterstops: CE CRD-C 513, for embedding in concrete to prevent passage of fluids through joints. Factory fabricate corners, intersections, and directional changes.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Williams Products, Inc.
 - 2. Profile: Flat dumbbell without center bulb.
 - 3. Dimensions: 4 inches by 3/16 inch thick; nontapered.

2.7 VAPOR AND RADON BARRIER

A. Sheet Vapor Barrier and Radon Barrier, at Slab-on-Grade: ASTM E 1745 Class A, with a minimum thickness of 20 mils. Include manufacturer's recommended adhesive or pressure-sensitive tape (minimum 2-inch width).

- 1. Basis-of-Design Product: Raven Industries, Inc.; Vapor Block Plus VBP20.
- 2. Other Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. GCP Applied Technologies (formerly Grace Construction Products).
 - b. Raven Industries, Inc.
 - c. Stego Industries, LLC.
 - d. W. R. Meadows, Inc.

2.8 LIQUID FLOOR TREATMENTS

- A. Penetrating Liquid Hardener: Clear, chemically reactive, waterborne solution of inorganic silicate or siliconate materials and proprietary components; odorless; that penetrates, hardens, and densifies concrete surfaces.
 - 1. Basis-of-Design Product: Curecrete Distribution Inc.; Ashford Formula.
 - 2. Other Acceptable Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. ChemMasters, Inc.
 - b. ChemTec Int'l.
 - c. Dayton Superior.
 - d. Euclid Chemical Company (The); an RPM company.
 - e. Kaufman Products, Inc.
 - f. L&M Construction Chemicals, Inc.
 - g. Metalcrete Industries.
 - h. Nox-Crete Products Group.
- B. Clear, Waterborne, Membrane-Forming, Curing and Sealing Compound (S CONC): ASTM C 1315, Type 1, Class A.
 - 1. Basis-of-Design Product: W.R. Meadows; Vocomp 30.
- C. Penetrating Moisture Vapor Barrier: Spray-applied clear liquid to seal slabs against vapor transmission ASTM C 1315, for concrete slabs-on-grade scheduled to receive adhered flooring materials. Confirm compatibility of sealer with flooring material and adhesives.
 - 1. Basis-of-Design Product: Spray-Lock SCP 327, Time of Placement by Spray-Lock Concrete Protection; www.concreteprotection.com.
 - 2. Application: Use on concrete floors where other finish floor materials are installed over concrete.

2.9 CURING MATERIALS

- A. Absorptive Cover: AASHTO M 182, Class 2, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd. (305 g/sq. m) when dry.
- B. Moisture-Retaining Cover: ASTM C 171, polyethylene film or white burlap-polyethylene sheet.

C. Water: Potable.

2.10 RELATED MATERIALS

- A. Expansion- and Isolation-Joint-Filler Strips: ASTM D 1751, asphalt-saturated cellulosic fiber.
- B. Semirigid Joint Filler: Two-component, semirigid, 100 percent solids, epoxy resin with a Type A shore durometer hardness of 80 according to ASTM D 2240.
- C. Bonding Agent: ASTM C 1059/C 1059M, Type II, nonredispersible, acrylic emulsion or styrene butadiene.
- D. Epoxy Bonding Adhesive: ASTM C 881, two-component epoxy resin, capable of humid curing and bonding to damp surfaces, of class suitable for application temperature and of grade to suit requirements, and as follows:
 - 1. Types I and II, nonload bearing for bonding hardened or freshly mixed concrete to hardened concrete.

2.11 REPAIR MATERIALS

- A. Repair Underlayment: Cement-based, polymer-modified, self-leveling product that can be applied in thicknesses from 1/8 inch (3.2 mm) and that can be feathered at edges to match adjacent floor elevations.
 - 1. Cement Binder: ASTM C 150/C 150M, portland cement or hydraulic or blended hydraulic cement as defined in ASTM C 219.
 - 2. Primer: Product of underlayment manufacturer recommended for substrate, conditions, and application.
 - 3. Aggregate: Well-graded, washed gravel, 1/8 to 1/4 inch (3.2 to 6 mm) or coarse sand as recommended by underlayment manufacturer.
 - 4. Compressive Strength: Not less than 4100 psi (29 MPa) at 28 days when tested according to ASTM C 109/C 109M.
- B. Repair Overlayment: Cement-based, polymer-modified, self-leveling product that can be applied in thicknesses from 1/4 inch (6.4 mm) and that can be filled in over a scarified surface to match adjacent floor elevations.
 - 1. Cement Binder: ASTM C 150/C 150M, portland cement or hydraulic or blended hydraulic cement as defined in ASTM C 219.
 - 2. Primer: Product of topping manufacturer recommended for substrate, conditions, and application.
 - 3. Aggregate: Well-graded, washed gravel, 1/8 to 1/4 inch (3.2 to 6 mm) or coarse sand as recommended by topping manufacturer.
 - 4. Compressive Strength: Not less than 5000 psi (34.5 MPa) at 28 days when tested according to ASTM C 109/C 109M.

2.12 CONCRETE MIXTURES, GENERAL

- A. Prepare design mixtures for each type and strength of concrete, proportioned on the basis of laboratory trial mixture or field test data, or both, according to ACI 301 (ACI 301M).
 - 1. Use a qualified independent testing agency for preparing and reporting proposed mixture designs based on laboratory trial mixtures.
- B. Cementitious Materials: Use fly ash, pozzolan, slag cement, and silica fume as needed to reduce the total amount of portland cement, which would otherwise be used, by not less than 40 percent. Limit percentage, by weight, of cementitious materials other than portland cement in concrete as follows:
 - 1. Fly Ash: 25 percent.
 - 2. Combined Fly Ash and Pozzolan: 25 percent.
 - 3. Slag Cement: 50 percent.
 - 4. Combined Fly Ash or Pozzolan and Slag Cement: 50 percent portland cement minimum, with fly ash or pozzolan not exceeding 25 percent.
 - 5. Silica Fume: 10 percent.
 - 6. Combined Fly Ash, Pozzolans, and Silica Fume: 35 percent with fly ash or pozzolans not exceeding 25 percent and silica fume not exceeding 10 percent.
 - 7. Combined Fly Ash or Pozzolans, Slag Cement, and Silica Fume: 50 percent with fly ash or pozzolans not exceeding 25 percent and silica fume not exceeding 10 percent.
- C. Limit water-soluble, chloride-ion content in hardened concrete to 0.3 percent by weight of cement.
- D. Admixtures: Use admixtures according to manufacturer's written instructions.
 - 1. Use water-reducing, high-range water-reducing, or plasticizing admixture in concrete, as required, for placement and workability.
 - 2. Use water-reducing and -retarding admixture when required by high temperatures, low humidity, or other adverse placement conditions.
 - 3. Use water-reducing admixture in pumped concrete, concrete for heavy-use industrial slabs and parking structure slabs, concrete required to be watertight, and concrete with a w/c ratio below 0.50.
 - 4. Use corrosion-inhibiting admixture in concrete mixtures where indicated.

2.13 CONCRETE MIXTURES FOR BUILDING ELEMENTS

A. Provide mixtures for building elements as indicated on the Structural Drawings.

2.14 FABRICATING REINFORCEMENT

A. Fabricate steel reinforcement according to CRSI's "Manual of Standard Practice."

2.15 CONCRETE MIXING

- A. Ready-Mixed Concrete: Measure, batch, mix, and deliver concrete according to ASTM C 94/C 94M and furnish batch ticket information.
 - 1. When air temperature is between 85 and 90 deg F (30 and 32 deg C), reduce mixing and delivery time from 1-1/2 hours to 75 minutes; when air temperature is above 90 deg F (32 deg C), reduce mixing and delivery time to 60 minutes.
- B. Project-Site Mixing: Measure, batch, and mix concrete materials and concrete according to ASTM C 94/C 94M. Mix concrete materials in appropriate drum-type batch machine mixer.
 - 1. For mixer capacity of 1 cu. yd. (0.76 cu. m) or smaller, continue mixing at least 1-1/2 minutes, but not more than 5 minutes after ingredients are in mixer, before any part of batch is released.
 - 2. For mixer capacity larger than 1 cu. yd. (0.76 cu. m), increase mixing time by 15 seconds for each additional 1 cu. yd. (0.76 cu. m).
 - 3. Provide batch ticket for each batch discharged and used in the Work, indicating Project identification name and number, date, mixture type, mixture time, quantity, and amount of water added. Record approximate location of final deposit in structure.

PART 3 - EXECUTION

3.1 FORMWORK INSTALLATION

- A. Design, erect, shore, brace, and maintain formwork, according to ACI 301 (ACI 301M), to support vertical, lateral, static, and dynamic loads, and construction loads that might be applied, until structure can support such loads.
- B. Construct formwork so concrete members and structures are of size, shape, alignment, elevation, and position indicated, within tolerance limits of ACI 117 (ACI 117M).
- C. Limit concrete surface irregularities, designated by ACI 347 as abrupt or gradual, as follows:
 - 1. Class A, 1/8 inch (3.2 mm) for smooth-formed finished surfaces.
 - 2. Class B, 1/4 inch (6 mm) for rough-formed finished surfaces.
- D. Construct forms tight enough to prevent loss of concrete mortar.
- E. Construct forms for easy removal without hammering or prying against concrete surfaces. Provide crush or wrecking plates where stripping may damage cast-concrete surfaces. Provide top forms for inclined surfaces steeper than 1.5 horizontal to 1 vertical.
 - 1. Install keyways, reglets, recesses, and the like, for easy removal.
 - 2. Do not use rust-stained steel form-facing material.
- F. Set edge forms, bulkheads, and intermediate screed strips for slabs to achieve required elevations and slopes in finished concrete surfaces. Provide and secure units to support screed strips; use strike-off templates or compacting-type screeds.

- G. Provide temporary openings for cleanouts and inspection ports where interior area of formwork is inaccessible. Close openings with panels tightly fitted to forms and securely braced to prevent loss of concrete mortar. Locate temporary openings in forms at inconspicuous locations.
- H. Chamfer exterior corners and edges of permanently exposed concrete.
- I. Form openings, chases, offsets, sinkages, keyways, reglets, blocking, screeds, and bulkheads required in the Work. Determine sizes and locations from trades providing such items.
- J. Clean forms and adjacent surfaces to receive concrete. Remove chips, wood, sawdust, dirt, and other debris just before placing concrete.
- K. Retighten forms and bracing before placing concrete, as required, to prevent mortar leaks and maintain proper alignment.
- L. Coat contact surfaces of forms with form-release agent, according to manufacturer's written instructions, before placing reinforcement.

3.2 EMBEDDED ITEM INSTALLATION

- A. Place and secure anchorage devices and other embedded items required for adjoining work that is attached to or supported by cast-in-place concrete. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 1. Install anchor rods, accurately located, to elevations required and complying with tolerances in Section 7.5 of AISC 303.

3.3 REMOVING AND REUSING FORMS

- A. General: Formwork for sides of beams, walls, columns, and similar parts of the Work that does not support weight of concrete may be removed after cumulatively curing at not less than 50 deg F (10 deg C) for 24 hours after placing concrete. Concrete has to be hard enough to not be damaged by form-removal operations, and curing and protection operations need to be maintained.
 - 1. Leave formwork for beam soffits, joists, slabs, and other structural elements that support weight of concrete in place until concrete has achieved at least 70 percent of its 28-day design compressive strength.
 - 2. Remove forms only if shores have been arranged to permit removal of forms without loosening or disturbing shores.
- B. Clean and repair surfaces of forms to be reused in the Work. Split, frayed, delaminated, or otherwise damaged form-facing material are not acceptable for exposed surfaces. Apply new form-release agent.
- C. When forms are reused, clean surfaces, remove fins and laitance, and tighten to close joints. Align and secure joints to avoid offsets. Do not use patched forms for exposed concrete surfaces unless approved by Architect.

3.4 SHORING AND RESHORING INSTALLATION

- A. Comply with ACI 318 (ACI 318M) and ACI 301 (ACI 301M) for design, installation, and removal of shoring and reshoring.
 - 1. Do not remove shoring or reshoring until measurement of slab tolerances is complete.

3.5 VAPOR BARRIER INSTALLATION

- A. Sheet Vapor Barrier: Place, protect, and repair sheet vapor barrier according to ASTM E 1643 and manufacturer's written instructions.
 - 1. Lap joints 12 inches (300 mm) and seal with manufacturer's recommended tape.

3.6 STEEL REINFORCEMENT INSTALLATION

- A. General: Comply with CRSI's "Manual of Standard Practice" for fabricating, placing, and supporting reinforcement.
 - 1. Do not cut or puncture vapor barrier. Repair damage and reseal vapor barrier before placing concrete.
- B. Clean reinforcement of loose rust and mill scale, earth, ice, and other foreign materials that reduce bond to concrete.
- C. Accurately position, support, and secure reinforcement against displacement. Locate and support reinforcement with bar supports to maintain minimum concrete cover. Do not tack weld crossing reinforcing bars.
 - 1. Weld reinforcing bars according to AWS D1.4/D 1.4M, where indicated.
- D. Set wire ties with ends directed into concrete, not toward exposed concrete surfaces.
- E. Install welded-wire reinforcement in longest practicable lengths on bar supports spaced to minimize sagging. Lap edges and ends of adjoining sheets at least one mesh spacing. Offset laps of adjoining sheet widths to prevent continuous laps in either direction. Lace overlaps with wire.

3.7 JOINTS

- A. General: Construct joints true to line with faces perpendicular to surface plane of concrete.
- B. Construction Joints: Install so strength and appearance of concrete are not impaired, at locations indicated or as approved by Architect.
 - 1. Place joints perpendicular to main reinforcement. Continue reinforcement across construction joints unless otherwise indicated. Do not continue reinforcement through sides of strip placements of floors and slabs.
 - 2. Form keyed joints as indicated. Embed keys at least 1-1/2 inches (38 mm) into concrete.

- 3. Locate horizontal joints in walls and columns at underside of floors, slabs, beams, and girders and at the top of footings or floor slabs.
- 4. Space vertical joints in walls as indicated. Locate joints beside piers integral with walls, near corners, and in concealed locations where possible.
- 5. Use a bonding agent at locations where fresh concrete is placed against hardened or partially hardened concrete surfaces.
- 6. Use epoxy-bonding adhesive at locations where fresh concrete is placed against hardened or partially hardened concrete surfaces.
- C. Contraction Joints in Slabs-on-Grade: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of concrete thickness as follows:
 - 1. Grooved Joints: Form contraction joints after initial floating by grooving and finishing each edge of joint to a radius of 1/8 inch (3.2 mm). Repeat grooving of contraction joints after applying surface finishes. Eliminate groover tool marks on concrete surfaces.
 - 2. Sawed Joints: Form contraction joints with power saws equipped with shatterproof abrasive or diamond-rimmed blades. Cut 1/8-inch- (3.2-mm-) wide joints into concrete when cutting action does not tear, abrade, or otherwise damage surface and before concrete develops random contraction cracks.
- D. Isolation Joints in Slabs-on-Grade: After removing formwork, install joint-filler strips at slab junctions with vertical surfaces, such as column pedestals, foundation walls, grade beams, and other locations, as indicated.
 - 1. Extend joint-filler strips full width and depth of joint, terminating flush with finished concrete surface unless otherwise indicated.
 - Terminate full-width joint-filler strips not less than 1/2 inch (13 mm) or more than 1 inch (25 mm) below finished concrete surface where joint sealants, specified in Section 079200 "Joint Sealants," are indicated.
 - 3. Install joint-filler strips in lengths as long as practicable. Where more than one length is required, lace or clip sections together.
- E. Doweled Joints: Install dowel bars and support assemblies at joints where indicated. Lubricate or asphalt coat one-half of dowel length to prevent concrete bonding to one side of joint.

3.8 WATERSTOP INSTALLATION

A. Flexible Waterstops: Install in construction joints and at other joints indicated to form a continuous diaphragm. Install in longest lengths practicable. Support and protect exposed waterstops during progress of the Work. Field fabricate joints in waterstops according to manufacturer's written instructions.

3.9 CONCRETE PLACEMENT

A. Before placing concrete, verify that installation of formwork, reinforcement, and embedded items is complete and that required inspections are completed.

- B. Do not add water to concrete during delivery, at Project site, or during placement unless approved by Architect.
- C. Before test sampling and placing concrete, water may be added at Project site, subject to limitations of ACI 301 (ACI 301M).
 - 1. Do not add water to concrete after adding high-range water-reducing admixtures to mixture.
- D. Deposit concrete continuously in one layer or in horizontal layers of such thickness that no new concrete is placed on concrete that has hardened enough to cause seams or planes of weakness. If a section cannot be placed continuously, provide construction joints as indicated. Deposit concrete to avoid segregation.
 - 1. Deposit concrete in horizontal layers of depth not to exceed formwork design pressures and in a manner to avoid inclined construction joints.
 - 2. Consolidate placed concrete with mechanical vibrating equipment according to ACI 301 (ACI 301M).
 - 3. Do not use vibrators to transport concrete inside forms. Insert and withdraw vibrators vertically at uniformly spaced locations to rapidly penetrate placed layer and at least 6 inches (150 mm) into preceding layer. Do not insert vibrators into lower layers of concrete that have begun to lose plasticity. At each insertion, limit duration of vibration to time necessary to consolidate concrete and complete embedment of reinforcement and other embedded items without causing mixture constituents to segregate.
- E. Deposit and consolidate concrete for floors and slabs in a continuous operation, within limits of construction joints, until placement of a panel or section is complete.
 - 1. Consolidate concrete during placement operations, so concrete is thoroughly worked around reinforcement and other embedded items and into corners.
 - 2. Maintain reinforcement in position on chairs during concrete placement.
 - 3. Screed slab surfaces with a straightedge and strike off to correct elevations.
 - 4. Slope surfaces uniformly to drains where required.
 - 5. Begin initial floating using bull floats or darbies to form a uniform and open-textured surface plane, before excess bleedwater appears on the surface. Do not further disturb slab surfaces before starting finishing operations.

3.10 FINISHING FORMED SURFACES

- A. Rough-Formed Finish: As-cast concrete texture imparted by form-facing material with tie holes and defects repaired and patched. Remove fins and other projections that exceed specified limits on formed-surface irregularities.
 - 1. Apply to concrete surfaces not exposed to public view.
- B. Smooth-Formed Finish: As-cast concrete texture imparted by form-facing material, arranged in an orderly and symmetrical manner with a minimum of seams. Repair and patch tie holes and

defects. Remove fins and other projections that exceed specified limits on formed-surface irregularities.

- 1. Apply to concrete surfaces exposed to public view.
- C. Rubbed Finish: Apply the following to smooth-formed-finished as-cast concrete where indicated:
 - 1. Grout-Cleaned Finish: Wet concrete surfaces and apply grout of a consistency of thick paint to coat surfaces and fill small holes. Mix 1 part portland cement to 1-1/2 parts fine sand with a 1:1 mixture of bonding admixture and water. Add white portland cement in amounts determined by trial patches, so color of dry grout matches adjacent surfaces. Scrub grout into voids and remove excess grout. When grout whitens, rub surface with clean burlap and keep surface damp by fog spray for at least 36 hours.
- D. Related Unformed Surfaces: At tops of walls, horizontal offsets, and similar unformed surfaces adjacent to formed surfaces, strike off smooth and finish with a texture matching adjacent formed surfaces. Continue final surface treatment of formed surfaces uniformly across adjacent unformed surfaces unless otherwise indicated.

3.11 FINISHING FLOORS AND SLABS

- A. General: Comply with ACI 302.1R recommendations for screeding, restraightening, and finishing operations for concrete surfaces. Do not wet concrete surfaces.
- B. Float Finish: Consolidate surface with power-driven floats or by hand floating if area is small or inaccessible to power-driven floats. Restraighten, cut down high spots, and fill low spots. Repeat float passes and restraightening until surface is left with a uniform, smooth, granular texture.
 - 1. Apply float finish to surfaces to receive trowel finish.
- C. Trowel Finish: After applying float finish, apply first troweling and consolidate concrete by hand or power-driven trowel. Continue troweling passes and restraighten until surface is free of trowel marks and uniform in texture and appearance. Grind smooth any surface defects that would telegraph through applied coatings or floor coverings.
 - 1. Apply a trowel finish to surfaces exposed to view or to be covered with resilient flooring, carpet, ceramic or quarry tile set over a cleavage membrane, paint, or another thin-film-finish coating system.
 - 2. Finish surfaces to the following tolerances, according to ASTM E 1155 (ASTM E 1155M), for a randomly trafficked floor surface:
 - a. Specified overall values of flatness, F(F) 35; and of levelness, F(L) 25; with minimum local values of flatness, F(F) 24; and of levelness, F(L) 17; for slabs-on-grade.
- D. Trowel and Fine-Broom Finish: Apply a first trowel finish to surfaces where ceramic or quarry tile is to be installed by either thickset or thinset method. While concrete is still plastic, slightly scarify surface with a fine broom.
 - 1. Comply with flatness and levelness tolerances for trowel-finished floor surfaces.

- E. Broom Finish: Apply a broom finish to exterior concrete platforms, steps, ramps, and elsewhere as indicated.
 - 1. Immediately after float finishing, slightly roughen trafficked surface by brooming with fiber-bristle broom perpendicular to main traffic route. Coordinate required final finish with Architect before application.

3.12 MISCELLANEOUS CONCRETE ITEM INSTALLATION

- A. Filling In: Fill in holes and openings left in concrete structures after work of other trades is in place unless otherwise indicated. Mix, place, and cure concrete, as specified, to blend with inplace construction. Provide other miscellaneous concrete filling indicated or required to complete the Work.
- B. Curbs: Provide monolithic finish to interior curbs by stripping forms while concrete is still green and by steel-troweling surfaces to a hard, dense finish with corners, intersections, and terminations slightly rounded.
- C. Equipment Bases and Foundations:
 - 1. Coordinate sizes and locations of concrete bases with actual equipment provided.
 - 2. Construct concrete bases 4 inches high unless otherwise indicated, and extend base not less than 6 inches (150 mm) in each direction beyond the maximum dimensions of supported equipment unless otherwise indicated or unless required for seismic anchor support.
 - 3. Minimum Compressive Strength: match supporting construction.
 - 4. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around the full perimeter of concrete base.
 - 5. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete substrate.
 - 6. Prior to pouring concrete, place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 7. Cast anchor-bolt insert into bases. Install anchor bolts to elevations required for proper attachment to supported equipment.

3.13 CONCRETE PROTECTING AND CURING

- A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures. Comply with ACI 306.1 for cold-weather protection and ACI 301 (ACI 301M) for hot-weather protection during curing.
- B. Evaporation Retarder: Apply evaporation retarder to unformed concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h (1 kg/sq. m x h) before and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete, but before float finishing.
- C. Formed Surfaces: Cure formed concrete surfaces, including underside of beams, supported slabs, and other similar surfaces. If forms remain during curing period, moist cure after loosening forms. If removing forms before end of curing period, continue curing for remainder of curing period.

- D. Unformed Surfaces: Begin curing immediately after finishing concrete. Cure unformed surfaces, including floors and slabs, concrete floor toppings, and other surfaces.
- E. Cure concrete according to ACI 308.1, by one or a combination of the following methods:
 - 1. Moisture Curing: Keep surfaces continuously moist for not less than seven days with the following materials:
 - a. Water.
 - b. Continuous water-fog spray.
 - c. Absorptive cover, water saturated, and kept continuously wet. Cover concrete surfaces and edges with 12-inch (300-mm) lap over adjacent absorptive covers.
 - 2. Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover for curing concrete, placed in widest practicable width, with sides and ends lapped at least 12 inches (300 mm), and sealed by waterproof tape or adhesive. Cure for not less than seven days. Immediately repair any holes or tears during curing period, using cover material and waterproof tape.
 - a. Moisture cure or use moisture-retaining covers to cure concrete surfaces to receive floor coverings.
 - b. Moisture cure or use moisture-retaining covers to cure concrete surfaces to receive penetrating liquid floor treatments.
 - c. Cure concrete surfaces to receive floor coverings with either a moisture-retaining cover or a curing compound that the manufacturer certifies does not interfere with bonding of floor covering used on Project.

3.14 LIQUID FLOOR TREATMENT APPLICATION

- A. Penetrating Liquid Floor Treatment: Prepare, apply, and finish penetrating liquid floor treatment according to manufacturer's written instructions.
 - 1. Remove curing compounds, sealers, oil, dirt, laitance, and other contaminants and complete surface repairs.
 - 2. Do not apply to concrete that is less than 14 days old.
 - 3. Apply liquid until surface is saturated, scrubbing into surface until a gel forms; rewet; and repeat brooming or scrubbing. Rinse with water; remove excess material until surface is dry. Apply a second coat in a similar manner if surface is rough or porous.

3.15 JOINT FILLING

- A. Prepare, clean, and install joint filler according to manufacturer's written instructions.
 - 1. Defer joint filling until concrete has aged at least one month(s). Do not fill joints until construction traffic has permanently ceased.
- B. Remove dirt, debris, saw cuttings, curing compounds, and sealers from joints; leave contact faces of joints clean and dry.

C. Install semirigid joint filler full depth in saw-cut joints and at least 2 inches (50 mm) deep in formed joints. Overfill joint and trim joint filler flush with top of joint after hardening.

3.16 CONCRETE SURFACE REPAIRS

- A. Defective Concrete: Repair and patch defective areas when approved by Architect. Remove and replace concrete that cannot be repaired and patched to Architect's approval.
- B. Patching Mortar: Mix dry-pack patching mortar, consisting of 1 part portland cement to 2-1/2 parts fine aggregate passing a No. 16 (1.18-mm) sieve, using only enough water for handling and placing.
- C. Repairing Formed Surfaces: Surface defects include color and texture irregularities, cracks, spalls, air bubbles, honeycombs, rock pockets, fins and other projections on the surface, and stains and other discolorations that cannot be removed by cleaning.
 - 1. Immediately after form removal, cut out honeycombs, rock pockets, and voids more than 1/2 inch (13 mm) in any dimension to solid concrete. Limit cut depth to 3/4 inch (19 mm). Make edges of cuts perpendicular to concrete surface. Clean, dampen with water, and brush-coat holes and voids with bonding agent. Fill and compact with patching mortar before bonding agent has dried. Fill form-tie voids with patching mortar or cone plugs secured in place with bonding agent.
 - 2. Repair defects on surfaces exposed to view by blending white portland cement and standard portland cement so that, when dry, patching mortar matches surrounding color. Patch a test area at inconspicuous locations to verify mixture and color match before proceeding with patching. Compact mortar in place and strike off slightly higher than surrounding surface.
 - 3. Repair defects on concealed formed surfaces that affect concrete's durability and structural performance as determined by Architect.
- D. Repairing Unformed Surfaces: Test unformed surfaces, such as floors and slabs, for finish and verify surface tolerances specified for each surface. Correct low and high areas. Test surfaces sloped to drain for trueness of slope and smoothness; use a sloped template.
 - 1. Repair finished surfaces containing defects. Surface defects include spalls, popouts, honeycombs, rock pockets, crazing and cracks in excess of 0.01 inch (0.25 mm) wide or that penetrate to reinforcement or completely through unreinforced sections regardless of width, and other objectionable conditions.
 - 2. After concrete has cured at least 14 days, correct high areas by grinding.
 - 3. Correct localized low areas during or immediately after completing surface finishing operations by cutting out low areas and replacing with patching mortar. Finish repaired areas to blend into adjacent concrete.
 - 4. Correct other low areas scheduled to receive floor coverings with a repair underlayment. Prepare, mix, and apply repair underlayment and primer according to manufacturer's written instructions to produce a smooth, uniform, plane, and level surface. Feather edges to match adjacent floor elevations.
 - 5. Correct other low areas scheduled to remain exposed with a repair topping. Cut out low areas to ensure a minimum repair topping depth of 1/4 inch (6 mm) to match adjacent floor elevations. Prepare, mix, and apply repair topping and primer according to manufacturer's written instructions to produce a smooth, uniform, plane, and level surface.

- 6. Repair defective areas, except random cracks and single holes 1 inch (25 mm) or less in diameter, by cutting out and replacing with fresh concrete. Remove defective areas with clean, square cuts and expose steel reinforcement with at least a 3/4-inch (19-mm) clearance all around. Dampen concrete surfaces in contact with patching concrete and apply bonding agent. Mix patching concrete of same materials and mixture as original concrete, except without coarse aggregate. Place, compact, and finish to blend with adjacent finished concrete. Cure in same manner as adjacent concrete.
- 7. Repair random cracks and single holes 1 inch (25 mm) or less in diameter with patching mortar. Groove top of cracks and cut out holes to sound concrete and clean off dust, dirt, and loose particles. Dampen cleaned concrete surfaces and apply bonding agent. Place patching mortar before bonding agent has dried. Compact patching mortar and finish to match adjacent concrete. Keep patched area continuously moist for at least 72 hours.
- E. Perform structural repairs of concrete, subject to Architect's approval, using epoxy adhesive and patching mortar.
- F. Repair materials and installation not specified above may be used, subject to Architect's approval.

3.17 FIELD QUALITY CONTROL

- A. Special Inspections: Owner will engage a special inspector and qualified testing and inspecting agency to perform field tests and inspections and prepare test reports.
- B. Testing Agency: Engage a qualified testing and inspecting agency to perform tests and inspections and to submit reports.
- C. Inspections:
 - 1. Steel reinforcement placement.
 - 2. Steel reinforcement welding.
 - 3. Headed bolts and studs.
 - 4. Verification of use of required design mixture.
 - 5. Concrete placement, including conveying and depositing.
 - 6. Curing procedures and maintenance of curing temperature.
 - 7. Verification of concrete strength before removal of shores and forms from beams and slabs.
- D. Concrete Tests: Testing of composite samples of fresh concrete obtained according to ASTM C 172/C 172M shall be performed according to the following requirements:
 - 1. Testing Frequency: Obtain one composite sample for each day's pour of each concrete mixture exceeding 5 cu. yd. (4 cu. m), but less than 25 cu. yd. (19 cu. m), plus one set for each additional 100 cu. yd. (38 cu. m) or fraction thereof.
 - 2. Slump: ASTM C 143/C 143M; one test at point of placement for each composite sample, but not less than one test for each day's pour of each concrete mixture. Perform additional tests when concrete consistency appears to change.
 - 3. Air Content: ASTM C 231/C 231M, pressure method, for normal-weight concrete; one test for each composite sample, but not less than one test for each day's pour of each concrete mixture.

- 4. Concrete Temperature: ASTM C 1064/C 1064M; one test hourly when air temperature is 40 deg F (4.4 deg C) and below or 80 deg F (27 deg C) and above, and one test for each composite sample.
- 5. Compression Test Specimens: ASTM C 31/C 31M.
 - a. Cast and laboratory cure two sets of two standard cylinder specimens for each composite sample.
 - b. Cast and field cure two sets of two standard cylinder specimens for each composite sample.
- 6. Compressive-Strength Tests: ASTM C 39/C 39M; test one set of three laboratory-cured specimens at 7 days and one set of three specimens at 28 days.
 - a. Test one set of three field-cured specimens at 7 days and one set of three specimens at 28 days.
 - b. A compressive-strength test shall be the average compressive strength from a set of three specimens obtained from same composite sample and tested at age indicated.
- 7. When strength of field-cured cylinders is less than 85 percent of companion laboratorycured cylinders, Contractor shall evaluate operations and provide corrective procedures for protecting and curing in-place concrete.
- 8. Strength of each concrete mixture will be satisfactory if every average of any three consecutive compressive-strength tests equals or exceeds specified compressive strength and no compressive-strength test value falls below specified compressive strength by more than 500 psi (3.4 MPa).
- 9. Test results shall be reported in writing to Architect, concrete manufacturer, and Contractor within 48 hours of testing. Reports of compressive-strength tests shall contain Project identification name and number, date of concrete placement, name of concrete testing and inspecting agency, location of concrete batch in Work, design compressive strength at 28 days, concrete mixture proportions and materials, compressive breaking strength, and type of break for both 7- and 28-day tests.
- 10. Nondestructive Testing: Impact hammer, sonoscope, or other nondestructive device may be permitted by Architect but will not be used as sole basis for approval or rejection of concrete.
- 11. Additional Tests: Testing and inspecting agency shall make additional tests of concrete when test results indicate that slump, air entrainment, compressive strengths, or other requirements have not been met, as directed by Architect. Testing and inspecting agency may conduct tests to determine adequacy of concrete by cored cylinders complying with ASTM C 42/C 42M or by other methods as directed by Architect.
- 12. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.
- 13. Correct deficiencies in the Work that test reports and inspections indicate do not comply with the Contract Documents.
- E. Measure floor and slab flatness and levelness according to ASTM E 1155 (ASTM E 1155M) within 24 hours of finishing.

3.18 PROTECTION OF LIQUID FLOOR TREATMENTS

A. Protect liquid floor treatment from damage and wear during the remainder of construction period. Use protective methods and materials, including temporary covering, recommended in writing by liquid floor treatments installer.

END OF SECTION 033000

SECTION 055000 - METAL FABRICATIONS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Steel framing and supports for mechanical and electrical equipment.
 - 2. Steel framing and supports for applications where framing and supports are not specified in other Sections.
 - 3. Metal bollards.
 - 4. Downspout guards.
 - 5. Metal downspout boots.
- B. Products furnished, but not installed, under this Section include the following:
 - 1. Loose steel lintels.
 - 2. Anchor bolts, steel pipe sleeves, slotted-channel inserts, and wedge-type inserts indicated to be cast into concrete or built into unit masonry.
 - 3. Steel weld plates and angles for casting into concrete for applications where they are not specified in other Sections.
- C. Related Requirements:
 - 1. Section 033000 "Cast-in-Place Concrete" for installing anchor bolts, steel pipe sleeves, slotted-channel inserts, wedge-type inserts, and other items cast into concrete.

1.3 COORDINATION

- A. Coordinate selection of shop primers with topcoats to be applied over them. Comply with paint and coating manufacturers' written recommendations to ensure that shop primers and topcoats are compatible with one another.
- B. Coordinate installation of metal fabrications that are anchored to or that receive other work. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors, that are to be embedded in concrete or masonry. Deliver such items to Project site in time for installation.

1.4 ACTION SUBMITTALS

- A. Shop Drawings: Show fabrication and installation details. Include plans, elevations, sections, and details of metal fabrications and their connections. Show anchorage and accessory items. Provide Shop Drawings for the following:
 - 1. Steel framing and supports for mechanical and electrical equipment.
 - 2. Steel framing and supports for applications where framing and supports are not specified in other Sections.
 - 3. Metal bolds.

1.5 INFORMATIONAL SUBMITTALS

- A. Welding certificates.
- B. Paint Compatibility Certificates: From manufacturers of topcoats applied over shop primers, certifying that shop primers are compatible with topcoats.

1.6 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1/D1.1M, "Structural Welding Code Steel."
 - 2. AWS D1.2/D1.2M, "Structural Welding Code Aluminum."
 - 3. AWS D1.6/D1.6M, "Structural Welding Code Stainless Steel."

1.7 FIELD CONDITIONS

A. Field Measurements: Verify actual locations of walls and other construction contiguous with metal fabrications by field measurements before fabrication.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes acting on exterior metal fabrications by preventing buckling, opening of joints, overstressing of components, failure of connections, and other detrimental effects.
 - 1. Temperature Change: 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.

2.2 METALS

- A. Metal Surfaces, General: Provide materials with smooth, flat surfaces unless otherwise indicated. For metal fabrications exposed to view in the completed Work, provide materials without seam marks, roller marks, rolled trade names, or blemishes.
- B. Steel Plates, Shapes, and Bars: ASTM A 36/A 36M.
- C. Rolled-Steel Floor Plate: ASTM A 786/A 786M, rolled from plate complying with ASTM A 36/A 36M or ASTM A 283/A 283M, Grade C or D.
- D. Checker Plate: Structural carbon steel, 1/4-inch thick, with rhombic-shaped projections for nonslip surface; hot-dipped galvanized.
- E. Steel Tubing: ASTM A 500/A 500M, cold-formed steel tubing.
- F. Steel Pipe: ASTM A 53/A 53M, Standard Weight (Schedule 40) unless otherwise indicated.
- G. Cast Iron: Either gray iron, ASTM A 48/A 48M, or malleable iron, ASTM A 47/A 47M, unless otherwise indicated.

2.3 FASTENERS

- A. General: Unless otherwise indicated, provide Type 304 stainless-steel fasteners for exterior use and zinc-plated fasteners with coating complying with ASTM B 633 or ASTM F 1941 (ASTM F 1941M), Class Fe/Zn 5, at exterior walls. Select fasteners for type, grade, and class required.
 - 1. Provide stainless-steel fasteners for fastening aluminum.
 - 2. Provide stainless-steel fasteners for fastening stainless steel.
 - 3. Provide stainless-steel fasteners for fastening nickel silver.
 - 4. Provide bronze fasteners for fastening bronze.
- B. Steel Bolts and Nuts: Regular hexagon-head bolts, ASTM A 307, Grade A (ASTM F 568M, Property Class 4.6); with hex nuts, ASTM A 563 (ASTM A 563M); and, where indicated, flat washers.
- C. Steel Bolts and Nuts: Regular hexagon-head bolts, ASTM A 325, Type 3 (ASTM A 325M, Type 3); with hex nuts, ASTM A 563, Grade C3 (ASTM A 563M, Class 8S3); and, where indicated, flat washers.
- D. Anchor Bolts: ASTM F 1554, Grade 36, of dimensions indicated; with nuts, ASTM A 563 (ASTM A 563M); and, where indicated, flat washers.
 - 1. Hot-dip galvanize or provide mechanically deposited, zinc coating where item being fastened is indicated to be galvanized.
- E. Anchors, General: Anchors capable of sustaining, without failure, a load equal to six times the load imposed when installed in unit masonry and four times the load imposed when installed in concrete, as determined by testing according to ASTM E 488/E 488M, conducted by a qualified independent testing agency.

- F. Cast-in-Place Anchors in Concrete: Either threaded type or wedge type unless otherwise indicated; galvanized ferrous castings, either ASTM A 47/A 47M malleable iron or ASTM A 27/A 27M cast steel. Provide bolts, washers, and shims as needed, all hot-dip galvanized per ASTM F 2329.
- G. Post-Installed Anchors: Torque-controlled expansion anchors or chemical anchors.
 - 1. Material for Interior Locations: Carbon-steel components zinc plated to comply with ASTM B 633 or ASTM F 1941 (ASTM F 1941M), Class Fe/Zn 5, unless otherwise indicated.

2.4 MISCELLANEOUS MATERIALS

- A. Shop Primers: Provide product compatible with system as required per Sections 099113 "Exterior Painting," 099123 "Interior Painting," as appropriate for location and painting system indicated.
- B. Universal Shop Primer: Fast-curing, lead- and chromate-free, universal modified-alkyd primer complying with MPI#79 and compatible with topcoat.
 - 1. Use primer containing pigments that make it easily distinguishable from zinc-rich primer.
- C. Epoxy Zinc-Rich Primer: Complying with MPI#20 and compatible with topcoat.
- D. Shop Primer for Galvanized Steel: Primer formulated for exterior use over zinc-coated metal and compatible with finish paint systems indicated.
- E. Galvanizing Repair Paint: High-zinc-dust-content paint complying with SSPC-Paint 20 and compatible with paints specified to be used over it.
- F. Bituminous Paint: Cold-applied asphalt emulsion complying with ASTM D 1187/D 1187M.
- G. Nonshrink, Nonmetallic Grout: Factory-packaged, nonstaining, noncorrosive, nongaseous grout complying with ASTM C 1107/C 1107M. Provide grout specifically recommended by manufacturer for interior and exterior applications.
- H. Concrete: Comply with requirements in Section 033000 "Cast-in-Place Concrete" for normalweight, air-entrained, concrete with a minimum 28-day compressive strength of 3000 psi (20 MPa).

2.5 FABRICATION, GENERAL

- A. Shop Assembly: Preassemble items in the shop to greatest extent possible. Disassemble units only as necessary for shipping and handling limitations. Use connections that maintain structural value of joined pieces. Clearly mark units for reassembly and coordinated installation.
- B. Cut, drill, and punch metals cleanly and accurately. Remove burrs and ease edges to a radius of approximately 1/32 inch (1 mm) unless otherwise indicated. Remove sharp or rough areas on exposed surfaces.

- C. Form bent-metal corners to smallest radius possible without causing grain separation or otherwise impairing work.
- D. Form exposed work with accurate angles and surfaces and straight edges.
- E. Weld corners and seams continuously to comply with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
- F. Form exposed connections with hairline joints, flush and smooth, using concealed fasteners or welds where possible. Where exposed fasteners are required, use Phillips flat-head (countersunk) fasteners unless otherwise indicated. Locate joints where least conspicuous.
- G. Fabricate seams and other connections that are exposed to weather in a manner to exclude water. Provide weep holes where water may accumulate.
- H. Cut, reinforce, drill, and tap metal fabrications as indicated to receive finish hardware, screws, and similar items.
- I. Provide for anchorage of type indicated; coordinate with supporting structure. Space anchoring devices to secure metal fabrications rigidly in place and to support indicated loads.
- J. Where units are indicated to be cast into concrete or built into masonry, equip with integrally welded steel strap anchors, 1/8 by 1-1/2 inches (3.2 by 38 mm), with a minimum 6-inch (150-mm) embedment and 2-inch (50-mm) hook, not less than 8 inches (200 mm) from ends and corners of units and 24 inches (600 mm) o.c., unless otherwise indicated.

2.6 MISCELLANEOUS FRAMING AND SUPPORTS

- A. General: Provide steel framing and supports not specified in other Sections as needed to complete the Work.
- B. Fabricate units from steel shapes, plates, and bars of welded construction unless otherwise indicated. Fabricate to sizes, shapes, and profiles indicated and as necessary to receive adjacent construction.
 - 1. Fabricate units from slotted channel framing where indicated.
 - 2. Furnish inserts for units installed after concrete is placed.
- C. Fabricate supports for operable partitions from continuous steel beams of sizes indicated with attached bearing plates, anchors, and braces as indicated. Drill or punch bottom flanges of beams to receive partition track hanger rods; locate holes where indicated on operable partition Shop Drawings.
- D. Galvanize miscellaneous framing and supports where indicated.
- E. Prime miscellaneous framing and supports with primer specified in Division 09.

2.7 MISCELLANEOUS STEEL TRIM

- A. Unless otherwise indicated, fabricate units from steel shapes, plates, and bars of profiles shown with continuously welded joints and smooth exposed edges. Miter corners and use concealed field splices where possible.
- B. Provide cutouts, fittings, and anchorages as needed to coordinate assembly and installation with other work.
 - 1. Provide with integrally welded steel strap anchors for embedding in concrete or masonry construction.
- C. Galvanize and prime exterior miscellaneous steel trim.
- D. Prime exterior miscellaneous steel trim with primer specified in Division 09.

2.8 METAL BOLLARDS

- A. Fabricate metal bollards from Schedule 40 steel pipe unless indicated otherwise.
 - 1. Cap bollards with 1/4-inch- (6.4-mm-) thick steel plate.

2.9 DOWNSPOUT GUARDS

- A. Fabricate downspout guards from 3/8-inch- (9.5-mm-) thick by 12-inch- (300-mm-) wide steel plate, bent to fit flat against the wall or column at both ends and to fit around pipe with 2-inch (50-mm) clearance between pipe and pipe guard. Drill each end for two 3/4-inch (19-mm) anchor bolts.
- B. Galvanize and prime downspout guards.

2.10 METAL DOWNSPOUT BOOTS

- A. Provide downspout boots made from cast iron in heights indicated with inlets of size and shape to suit downspouts. Provide units with flanges and holes for countersunk anchor bolts.
 - 1. Outlet: Vertical, to discharge into pipe.

2.11 STEEL WELD PLATES AND ANGLES

A. Provide steel weld plates and angles not specified in other Sections, for items supported from concrete construction as needed to complete the Work. Provide each unit with no fewer than two integrally welded steel strap anchors for embedding in concrete.

2.12 FINISHES, GENERAL

A. Finish metal fabrications after assembly.

METAL FABRICATIONS

B. Finish exposed surfaces to remove tool and die marks and stretch lines, and to blend into surrounding surface.

2.13 STEEL AND IRON FINISHES

- A. Galvanizing: Hot-dip galvanize items as indicated to comply with ASTM A 153/A 153M for steel and iron hardware and with ASTM A 123/A 123M for other steel and iron products.
 - 1. Do not quench or apply post galvanizing treatments that might interfere with paint adhesion.
- B. Preparation for Shop Priming Galvanized Items: After galvanizing, thoroughly clean railings of grease, dirt, oil, flux, and other foreign matter, and treat with metallic phosphate process.
- C. Shop prime iron and steel items not indicated to be galvanized unless they are to be embedded in concrete, sprayed-on fireproofing, or masonry, or unless otherwise indicated.
 - 1. Shop prime with primers specified in Section 099113 "Exterior Painting", primers specified in Section 099123 "Interior Painting"
- D. Preparation for Shop Priming: Clean surfaces to be painted per primer manufacturer's written instructions. Remove loose rust and mill scale and other spatter, slag, flux deposits, and any other potential bond-breaking materials.
- E. Shop Priming: Apply shop primer to comply with SSPC-PA 1, "Paint Application Specification No. 1: Shop, Field, and Maintenance Painting of Steel," for shop painting.
 - 1. Stripe paint corners, crevices, bolts, welds, and sharp edges.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Cutting, Fitting, and Placement: Perform cutting, drilling, and fitting required for installing metal fabrications. Set metal fabrications accurately in location, alignment, and elevation; with edges and surfaces level, plumb, true, and free of rack; and measured from established lines and levels.
- B. Fit exposed connections accurately together to form hairline joints. Weld connections that are not to be left as exposed joints but cannot be shop welded because of shipping size limitations. Do not weld, cut, or abrade surfaces of exterior units that have been hot-dip galvanized after fabrication and are for bolted or screwed field connections.
- C. Field Welding: Comply with the following requirements:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.

- 4. At exposed connections, finish exposed welds and surfaces smooth and blended so no roughness shows after finishing and contour of welded surface matches that of adjacent surface.
- D. Fastening to In-Place Construction: Provide anchorage devices and fasteners where metal fabrications are required to be fastened to in-place construction. Provide threaded fasteners for use with concrete and masonry inserts, toggle bolts, through bolts, lag screws, wood screws, and other connectors.
- E. Provide temporary bracing or anchors in formwork for items that are to be built into concrete, masonry, or similar construction.
- F. Corrosion Protection: Coat concealed surfaces of aluminum that come into contact with grout, concrete, masonry, wood, or dissimilar metals with the following:
 - 1. Cast Aluminum: Heavy coat of bituminous paint.

3.2 INSTALLING MISCELLANEOUS FRAMING AND SUPPORTS

- A. General: Install framing and supports to comply with requirements of items being supported, including manufacturers' written instructions and requirements indicated on Shop Drawings.
- B. Support steel girders on solid grouted masonry, concrete, or steel pipe columns. Secure girders with anchor bolts embedded in grouted masonry or concrete or with bolts through top plates of pipe columns.
 - 1. Where grout space under bearing plates is indicated for girders supported on concrete or masonry, install as specified in "Installing Bearing and Leveling Plates" Article.

3.3 INSTALLING METAL BOLLARDS

- A. Fill metal-capped bollards solidly with concrete and allow concrete to cure seven days before installing.
- B. Anchor bollards in place with concrete footings. Center and align bollards in holes 3 inches (75 mm) above bottom of excavation. Place concrete and vibrate or tamp for consolidation. Support and brace bollards in position until concrete has cured.

3.4 ADJUSTING AND CLEANING

- A. Touchup Painting: Immediately after erection, clean field welds, bolted connections, and abraded areas. Paint uncoated and abraded areas with the same material as used for shop painting to comply with SSPC-PA 1 for touching up shop-painted surfaces.
 - 1. Apply by brush or spray to provide a minimum 2.0-mil (0.05-mm) dry film thickness.
- B. Touchup Painting: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint are specified in Section 099113 "Exterior Painting." and Section 099123 "Interior Painting."

C. Galvanized Surfaces: Clean field welds, bolted connections, and abraded areas and repair galvanizing to comply with ASTM A 780/A 780M.

END OF SECTION 055000

SECTION 061000 - ROUGH CARPENTRY

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Framing with dimension lumber.
 - 2. Wood blocking and nailers.

1.3 DEFINITIONS

- A. Boards or Strips: Lumber of less than 2 inches nominal (38 mm actual) size in least dimension.
- B. Dimension Lumber: Lumber of 2 inches nominal (38 mm actual) size or greater but less than 5 inches nominal (114 mm actual) size in least dimension.
- C. Exposed Framing: Framing not concealed by other construction.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of process and factory-fabricated product. Indicate component materials and dimensions and include construction and application details.
 - 1. Include data for wood-preservative treatment from chemical treatment manufacturer and certification by treating plant that treated materials comply with requirements. Indicate type of preservative used and net amount of preservative retained.
 - 2. Include data for fire-retardant treatment from chemical treatment manufacturer and certification by treating plant that treated materials comply with requirements. Include physical properties of treated materials based on testing by a qualified independent testing agency.
 - 3. For fire-retardant treatments, include physical properties of treated lumber both before and after exposure to elevated temperatures, based on testing by a qualified independent testing agency according to ASTM D5664.
 - 4. For products receiving a waterborne treatment, include statement that moisture content of treated materials was reduced to levels specified before shipment to Project site.
- B. Fastener Patterns: Full-size templates for fasteners in exposed framing.

1.5 INFORMATIONAL SUBMITTALS

- A. Material Certificates: For dimension lumber specified to comply with minimum allowable unit stresses. Indicate species and grade selected for each use and design values approved by the ALSC Board of Review.
- B. Evaluation Reports: For the following, from ICC-ES:
 - 1. Wood-preservative-treated wood.
 - 2. Fire-retardant-treated wood.
 - 3. Engineered wood products.
 - 4. Power-driven fasteners.
 - 5. Post-installed anchors.
 - 6. Metal framing anchors.

1.6 QUALITY ASSURANCE

A. Testing Agency Qualifications: For testing agency providing classification marking for fireretardant treated material, an inspection agency acceptable to authorities having jurisdiction that periodically performs inspections to verify that the material bearing the classification marking is representative of the material tested.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Stack wood products flat with spacers beneath and between each bundle to provide air circulation. Protect wood products from weather by covering with waterproof sheeting, securely anchored. Provide for air circulation around stacks and under coverings.

PART 2 - PRODUCTS

2.1 WOOD PRODUCTS, GENERAL

- A. Lumber: DOC PS 20 and applicable rules of grading agencies indicated. If no grading agency is indicated, comply with the applicable rules of any rules-writing agency certified by the ALSC Board of Review. Grade lumber by an agency certified by the ALSC Board of Review to inspect and grade lumber under the rules indicated.
 - 1. Factory mark each piece of lumber with grade stamp of grading agency.
 - 2. For exposed lumber indicated to receive a stained or natural finish, mark grade stamp on end or back of each piece or omit grade stamp and provide certificates of grade compliance issued by grading agency.
 - 3. Dress lumber, S4S, unless otherwise indicated.
- B. Maximum Moisture Content of Lumber: 15 percent for 2-inch nominal (38-mm actual) thickness or less; 19 percent for more than 2-inch nominal (38-mm actual) thickness unless otherwise indicated.

ROUGH CARPENTRY

- C. Engineered Wood Products: Acceptable to authorities having jurisdiction and for which current model code research or evaluation reports exist that show compliance with building code in effect for Project.
 - 1. Allowable design stresses, as published by manufacturer, shall meet or exceed those indicated. Manufacturer's published values shall be determined from empirical data or by rational engineering analysis and demonstrated by comprehensive testing performed by a qualified independent testing agency.

2.2 WOOD-PRESERVATIVE-TREATED LUMBER

- A. Preservative Treatment by Pressure Process: AWPA U1; Use Category UC2 for interior construction not in contact with ground, Use Category UC3b for exterior construction not in contact with ground, and Use Category UC4a for items in contact with ground.
 - 1. Preservative Chemicals: Acceptable to authorities having jurisdiction and containing no arsenic or chromium. Do not use inorganic boron (SBX) for sill plates.
 - 2. For exposed items indicated to receive a stained or natural finish, chemical formulations shall not require incising, contain colorants, bleed through, or otherwise adversely affect finishes.
- B. Kiln-dry lumber after treatment to a maximum moisture content of 19 percent. Do not use material that is warped or that does not comply with requirements for untreated material.
- C. Mark lumber with treatment quality mark of an inspection agency approved by the ALSC Board of Review.
 - 1. For exposed lumber indicated to receive a stained or natural finish, mark end or back of each piece or omit marking and provide certificates of treatment compliance issued by inspection agency.
- D. Application: Treat items indicated on Drawings, and the following:
 - 1. Wood cants, nailers, curbs, equipment support bases, blocking, stripping, and similar members in connection with roofing, flashing, vapor barriers, and waterproofing.
 - 2. Wood sills, sleepers, blocking, furring, stripping, and similar concealed members in contact with masonry or concrete.
 - 3. Wood framing and furring attached directly to the interior of below-grade exterior masonry or concrete walls.
 - 4. Wood floor plates that are installed over concrete slabs-on-grade.

2.3 DIMENSION LUMBER FRAMING

- A. Load-Bearing Partitions: No. 2 grade.
 - 1. Application: Exterior walls.
 - 2. Species:
 - a. Southern pine; SPIB.

ROUGH CARPENTRY

- b. Douglas fir-larch; WCLIB or WWPA.
- B. Joists, Rafters, and Other Framing: No. 2 grade.
 - 1. Application: Roof joists
 - 2. Species:
 - a. Southern pine; SPIB.
 - b. Douglas fir-larch; WCLIB or WWPA.

2.4 MISCELLANEOUS LUMBER

- A. General: Provide miscellaneous lumber indicated and lumber for support or attachment of other construction, including the following:
 - 1. Blocking.
 - 2. Nailers.
 - 3. Rooftop equipment bases and support curbs.
 - 4. Cants.
 - 5. Furring.
 - 6. Grounds.
 - 7. Utility shelving.
- B. Dimension Lumber Items: Construction or No. 2 grade lumber of the following species:
 - 1. Mixed southern pine or southern pine; SPIB.
 - 2. Western woods; WCLIB or WWPA.
- C. Concealed Boards: 19 percent maximum moisture content and any of the following species and grades:
 - 1. Mixed southern pine or southern pine; No. 2 grade; SPIB.
 - 2. Western woods; Construction or No. 2 Common grade; WCLIB or WWPA.
- D. For blocking not used for attachment of other construction, Utility, Stud, or No. 3 grade lumber of any species may be used provided that it is cut and selected to eliminate defects that will interfere with its attachment and purpose.
- E. For blocking and nailers used for attachment of other construction, select and cut lumber to eliminate knots and other defects that will interfere with attachment of other work.
- F. For furring strips for installing plywood or hardboard paneling, select boards with no knots capable of producing bent-over nails and damage to paneling.

2.5 PLYWOOD BACKING PANELS

A. Equipment Backing Panels: Plywood, DOC PS 1, Exterior, A-C, fire-retardant treated, in thickness indicated or, if not indicated, not less than 1/2-inch (13-mm) nominal thickness.

2.6 FASTENERS

- A. General: Fasteners shall be of size and type indicated and shall comply with requirements specified in this article for material and manufacture.
 - 1. Where rough carpentry is exposed to weather, in ground contact, pressure-preservative treated, or in area of high relative humidity, provide fasteners of Type 304 stainless steel.
- B. Nails, Brads, and Staples: ASTM F1667.
- C. Power-Driven Fasteners: Fastener systems with an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC70.
- D. Post-Installed Anchors: Fastener systems with an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC01, ICC-ES AC58, ICC-ES AC193 or ICC-ES AC308 as appropriate for the substrate.
 - 1. Material: Carbon-steel components, zinc plated to comply with ASTM B633, Class Fe/Zn 5.
 - 2. Material: Stainless steel with bolts and nuts complying with ASTM F593 and ASTM F594, Alloy Group 1 or 2 (ASTM F738M and ASTM F836M, Grade A1 or A4).

2.7 METAL FRAMING ANCHORS

- A. Allowable design loads, as published by manufacturer, shall meet or exceed those of basis-of-design products. Manufacturer's published values shall be determined from empirical data or by rational engineering analysis and demonstrated by comprehensive testing performed by a qualified independent testing agency. Framing anchors shall be punched for fasteners adequate to withstand same loads as framing anchors.
- B. Galvanized-Steel Sheet: Hot-dip, zinc-coated steel sheet complying with ASTM A653/A653M, G60 (Z180) coating designation.
 - 1. Use for interior locations unless otherwise indicated.
- C. Hot-Dip, Heavy-Galvanized Steel Sheet: ASTM A653/A653M; structural steel (SS), high-strength low-alloy steel Type A (HSLAS Type A), or high-strength low-alloy steel Type B (HSLAS Type B); G185 (Z550) coating designation; and not less than 0.036 inch (0.9 mm) thick.
 - 1. Use for wood-preservative-treated lumber and where indicated.
- D. Stainless Steel Sheet: ASTM A240/A240M or ASTM A666, Type 304.
 - 1. Use for exterior locations and where indicated.

2.8 MISCELLANEOUS MATERIALS

- A. Sill-Sealer Gaskets: Glass-fiber-resilient insulation, fabricated in strip form, for use as a sill sealer; 1-inch (25-mm) nominal thickness, compressible to 1/32 inch (0.8 mm); selected from manufacturer's standard widths to suit width of sill members indicated.
- B. Sill-Sealer Gaskets: Closed-cell neoprene foam, 1/4 inch (6.4 mm) thick, selected from manufacturer's standard widths to suit width of sill members indicated.
- C. Flexible Flashing: Composite, self-adhesive, flashing product consisting of a pliable, butyl rubber or rubberized-asphalt compound, bonded to a high-density polyethylene film, aluminum foil, or spunbonded polyolefin to produce an overall thickness of not less than 0.025 inch (0.6 mm).
- D. Water-Repellent Preservative: NWWDA-tested and -accepted formulation containing 3-iodo-2propynyl butyl carbamate, combined with an insecticide containing chloropyrifos as its active ingredient.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Framing Standard: Comply with AF&PA's WCD 1, "Details for Conventional Wood Frame Construction," unless otherwise indicated.
- B. Framing with Engineered Wood Products: Install engineered wood products to comply with manufacturer's written instructions.
- C. Set rough carpentry to required levels and lines, with members plumb, true to line, cut, and fitted. Fit rough carpentry accurately to other construction. Locate furring, nailers, blocking, grounds, and similar supports to comply with requirements for attaching other construction.
- D. Install plywood backing panels by fastening to studs; coordinate locations with utilities requiring backing panels. Install fire-retardant-treated plywood backing panels with classification marking of testing agency exposed to view.
- E. Install shear wall panels to comply with manufacturer's written instructions.
- F. Install metal framing anchors to comply with manufacturer's written instructions. Install fasteners through each fastener hole.
- G. Install sill sealer gasket to form continuous seal between sill plates and foundation walls.
- H. Do not splice structural members between supports unless otherwise indicated.
- I. Provide blocking and framing as indicated and as required to support facing materials, fixtures, specialty items, and trim.

- 1. Provide metal clips for fastening gypsum board or lath at corners and intersections where framing or blocking does not provide a surface for fastening edges of panels. Space clips not more than 16 inches (406 mm) o.c.
- J. Provide fire blocking in furred spaces, stud spaces, and other concealed cavities as indicated and as follows:
 - 1. Fire block furred spaces of walls, at each floor level, at ceiling, and at not more than 96 inches (2438 mm) o.c. with solid wood blocking or noncombustible materials accurately fitted to close furred spaces.
 - 2. Fire block concealed spaces of wood-framed walls and partitions at each floor level, at ceiling line of top story, and at not more than 96 inches (2438 mm) o.c. Where fire blocking is not inherent in framing system used, provide closely fitted solid wood blocks of same width as framing members and 2-inch nominal (38-mm actual) thickness.
 - 3. Fire block concealed spaces between floor sleepers with same material as sleepers to limit concealed spaces to not more than 100 sq. ft. (9.3 sq. m) and to solidly fill space below partitions.
 - 4. Fire block concealed spaces behind combustible cornices and exterior trim at not more than 20 feet (6 m) o.c.
- K. Sort and select lumber so that natural characteristics do not interfere with installation or with fastening other materials to lumber. Do not use materials with defects that interfere with function of member or pieces that are too small to use with minimum number of joints or optimum joint arrangement.
- L. Comply with AWPA M4 for applying field treatment to cut surfaces of preservative-treated lumber.
 - 1. Use inorganic boron for items that are continuously protected from liquid water.
 - 2. Use copper naphthenate for items not continuously protected from liquid water.
- M. Where wood-preservative-treated lumber is installed adjacent to metal decking, install continuous flexible flashing separator between wood and metal decking.
- N. Securely attach rough carpentry work to substrate by anchoring and fastening as indicated, complying with the following:
 - 1. Table 2304.9.1, "Fastening Schedule," in ICC's International Building Code (IBC).
 - Table R602.3(1), "Fastener Schedule for Structural Members," and Table R602.3(2), "Alternate Attachments," in ICC's International Residential Code for One- and Two-Family Dwellings.
 - 3. ICC-ES evaluation report for fastener.
- O. Use steel common nails unless otherwise indicated. Select fasteners of size that will not fully penetrate members where opposite side will be exposed to view or will receive finish materials. Make tight connections between members. Install fasteners without splitting wood. Drive nails snug but do not countersink nail heads unless otherwise indicated.
- P. For exposed work, arrange fasteners in straight rows parallel with edges of members, with fasteners evenly spaced, and with adjacent rows staggered.

- 1. Comply with indicated fastener patterns where applicable. Before fastening, mark fastener locations, using a template made of sheet metal, plastic, or cardboard.
- 2. Use finishing nails unless otherwise indicated. Countersink nail heads and fill holes with wood filler.
- 3. Use common nails unless otherwise indicated. Drive nails snug but do not countersink nail heads.

3.2 INSTALLATION OF WOOD BLOCKING AND NAILERS

- A. Install where indicated and where required for attaching other work. Form to shapes indicated and cut as required for true line and level of attached work. Coordinate locations with other work involved.
- B. Attach items to substrates to support applied loading. Recess bolts and nuts flush with surfaces unless otherwise indicated.
- C. Provide permanent grounds of dressed, pressure-preservative-treated, key-beveled lumber not less than 1-1/2 inches (38 mm) wide and of thickness required to bring face of ground to exact thickness of finish material. Remove temporary grounds when no longer required.

3.3 INSTALLATION OF WOOD FURRING

- A. Install level and plumb with closure strips at edges and openings. Shim with wood as required for tolerance of finish work.
- B. Furring to Receive Plywood or Hardboard Paneling: Install 1-by-3-inch nominal- (19-by-63-mm actual-) size furring vertically at 24 inches (610 mm) o.c.
- C. Furring to Receive Gypsum Board: Install 1-by-2-inch nominal- (19-by-38-mm actual-) size furring vertically at 16 inches (406 mm) o.c.

3.4 INSTALLATION OF WALL AND PARTITION FRAMING

- A. General: Provide single bottom plate and double top plates using members of 2-inch nominal (38mm actual) thickness whose widths equal that of studs. Fasten plates to supporting construction unless otherwise indicated.
 - 1. For exterior walls, provide wood studs sized and spaced as indicated on Drawings.
 - 2. Provide continuous horizontal blocking at midheight of partitions more than 96 inches (2438 mm) high, using members of 2-inch nominal (38-mm actual) thickness and of same width as wall or partitions.
- B. Construct corners and intersections with three or more studs
- C. Frame openings with multiple studs and headers as indicated on drawings. Provide nailed header members of thickness equal to width of studs. Support headers on jamb studs.

3.5 **PROTECTION**

- A. Protect wood that has been treated with inorganic boron (SBX) from weather. If, despite protection, inorganic boron-treated wood becomes wet, apply EPA-registered borate treatment. Apply borate solution by spraying to comply with EPA-registered label.
- B. Protect rough carpentry from weather. If, despite protection, rough carpentry becomes wet enough that moisture content exceeds that specified, apply EPA-registered borate treatment. Apply borate solution by spraying to comply with EPA-registered label.

END OF SECTION 061000

SECTION 061600 - SHEATHING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Wall sheathing.
 - 2. Roof sheathing.
- B. Related Requirements:
 - 1. Section 061000 "Rough Carpentry" for plywood backing panels.
 - 2. Section 072500 "Weather Barriers" for water-resistive barrier applied over wall sheathing.

1.3 PREINSTALLATION MEETINGS

- A. Preinstallation Conference: Conduct conference at Project site.
 - 1. Review air-barrier and water-resistant glass-mat gypsum sheathing requirements and installation, special details, transitions, mockups, air-leakage testing, protection, and work scheduling that covers air-barrier and water-resistant glass-mat gypsum sheathing.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of process and factory-fabricated product. Indicate component materials and dimensions and include construction and application details.
 - 1. Include data for wood-preservative treatment from chemical treatment manufacturer and certification by treating plant that treated plywood complies with requirements. Indicate type of preservative used and net amount of preservative retained.
 - 2. Include data for fire-retardant treatment from chemical treatment manufacturer and certification by treating plant that treated plywood complies with requirements. Include physical properties of treated materials.
 - 3. For fire-retardant treatments, include physical properties of treated plywood both before and after exposure to elevated temperatures, based on testing by a qualified independent testing agency according to ASTM D5516.
 - 4. For products receiving waterborne treatment, include statement that moisture content of treated materials was reduced to levels specified before shipment to Project site.

- 5. For air-barrier and water-resistant glass-mat gypsum sheathing, include manufacturer's technical data and tested physical and performance properties of products.
- B. Sustainable Design Submittals:
 - 1. Chain-of-Custody Certificates: For certified wood products. Include statement of costs.
 - 2. Product Data: For installation adhesives, indicating VOC content.
 - 3. Laboratory Test Reports: For installation adhesives, indicating compliance with requirements for low-emitting materials.

1.5 INFORMATIONAL SUBMITTALS

- A. Product Certificates: From air-barrier and water-resistant glass-mat gypsum sheathing manufacturer, certifying compatibility of sheathing accessory materials with Project materials that connect to or that come in contact with the sheathing.
- B. Product Test Reports: For each air-barrier and water-resistant glass-mat gypsum sheathing assembly, indicating compliance with specified requirements, for tests performed by a qualified testing agency.
- C. Evaluation Reports: For the following, from ICC-ES:
 - 1. Wood-preservative-treated plywood.
 - 2. Fire-retardant-treated plywood.
- D. Field quality-control reports.

1.6 QUALITY ASSURANCE

- A. Testing Agency Qualifications:
 - 1. For testing agency providing classification marking for fire-retardant-treated material, an inspection agency acceptable to authorities having jurisdiction that periodically performs inspections to verify that the material bearing the classification marking is representative of the material tested.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Stack panels flat with spacers beneath and between each bundle to provide air circulation. Protect sheathing from weather by covering with waterproof sheeting, securely anchored. Provide for air circulation around stacks and under coverings.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Fire-Resistance Ratings: As tested according to ASTM E119; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Fire-Resistance Ratings: Indicated by design designations from UL's "Fire Resistance Directory" or from the listings of another qualified testing agency.

2.2 WOOD PANEL PRODUCTS

- A. Certified Wood: Certify the following wood products in accordance with the American Tree Farm System's "AFF Standard," the AF&PA's Sustainable Forestry Initiative, FSC STD-01-001 and FSC STD-40-004, or the standards of the Programme for Endorsement of Forest Certification.
 - 1. Plywood.
- B. Thickness: As needed to comply with requirements specified, but not less than thickness indicated.
- C. Factory mark panels to indicate compliance with applicable standard.

2.3 PRESERVATIVE-TREATED PLYWOOD

- A. Preservative Treatment by Pressure Process: AWPA U1; Use Category UC2 for interior construction not in contact with ground, Use Category UC3b for exterior construction not in contact with ground, and Use Category UC4a for items in contact with ground.
 - 1. Preservative Chemicals: Acceptable to authorities having jurisdiction and containing no arsenic or chromium.
- B. Mark plywood with appropriate classification marking of an inspection agency acceptable to authorities having jurisdiction.
- C. Application: Treat all plywood unless otherwise indicated.

2.4 FIRE-RETARDANT-TREATED PLYWOOD

- A. General: Where fire-retardant-treated materials are indicated, use materials complying with requirements in this article that are acceptable to authorities having jurisdiction and with fire-test-response characteristics specified as determined by testing identical products per test method indicated by a qualified testing agency.
- B. Fire-Retardant-Treated Plywood by Pressure Process: Products with a flame-spread index of 25 or less when tested according to ASTM E84, and with no evidence of significant progressive combustion when the test is extended an additional 20 minutes, and with the flame front not

extending more than 10.5 feet (3.2 m) beyond the centerline of the burners at any time during the test.

- 1. Use treatment that does not promote corrosion of metal fasteners.
- 2. Exterior Type: Treated materials shall comply with requirements specified above for fireretardant-treated plywood by pressure process after being subjected to accelerated weathering according to ASTM D2898. Use for exterior locations and where indicated.
- 3. Design Value Adjustment Factors: Treated lumber plywood shall be tested according to ASTM D5516 and design value adjustment factors shall be calculated according to ASTM D6305. Span ratings after treatment shall be not less than span ratings specified. For roof sheathing and where high-temperature fire-retardant treatment is indicated, span ratings for temperatures up to 170 deg F (76 deg C) shall be not less than span ratings specified.
- C. Kiln-dry material after treatment to a maximum moisture content of 15 percent. Do not use material that is warped or does not comply with requirements for untreated material.
- D. Identify fire-retardant-treated plywood with appropriate classification marking of qualified testing agency.
- E. Application: Treat plywood indicated on Drawings.

2.5 WALL SHEATHING

- A. Plywood Sheathing: Either DOC PS 1 or DOC PS 2 sheathing.
 - 1. Span Rating: Not less than 24/16.
 - 2. Nominal Thickness: Not less than 7/16.

2.6 ROOF SHEATHING

- A. Plywood Sheathing: Either DOC PS 1 or DOC PS 2 sheathing.
 - 1. Span Rating: Not less than 40/20.
 - 2. Nominal Thickness: Not less than 19/32 inch.

2.7 COMPOSITE NAIL BASE INSULATED ROOF SHEATHING

- A. Oriented-Strand-Board-Surfaced, Polyisocyanurate-Foam Sheathing: ASTM C1289, Type V with DOC PS 2, Exposure 1 oriented strand board on one face.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Atlas Molded Products, a division of Atlas Roofing Corporation.
 - b. Cornell Performance Building Products, a Subsidiary of GAF.
 - c. Hunter Panels.

- d. Johns Manville; a Berkshire Hathaway company.
- e. Rmax A Business Unit of the Sika Corporation.
- f. The Dow Chemical Company.
- 2. Polyisocyanurate-Foam Thickness: 4 inches (102 mm).
- 3. Oriented-Strand-Board Nominal Thickness: 7/16 inch (11.1 mm).

2.8 FASTENERS

- A. General: Provide fasteners of size and type indicated that comply with requirements specified in this article for material and manufacture.
 - 1. For roof and wall sheathing, provide fasteners of Type 304 stainless steel.
- B. Nails, Brads, and Staples: ASTM F1667.
- C. Power-Driven Fasteners: Fastener systems with an evaluation report acceptable to authorities having jurisdiction, based on ICC-ES AC70.

PART 3 - EXECUTION

3.1 INSTALLATION, GENERAL

- A. Do not use materials with defects that impair quality of sheathing or pieces that are too small to use with minimum number of joints or optimum joint arrangement. Arrange joints so that pieces do not span between fewer than three support members.
- B. Cut panels at penetrations, edges, and other obstructions of work; fit tightly against abutting construction unless otherwise indicated.
- C. Securely attach to substrate by fastening as indicated, complying with the following:
 - 1. Table 2304.9.1, "Fastening Schedule," in the ICC's International Building Code.
 - 2. ICC-ES evaluation report for fastener.
- D. Use common wire nails unless otherwise indicated. Select fasteners of size that will not fully penetrate members where opposite side will be exposed to view or will receive finish materials. Make tight connections. Install fasteners without splitting wood.
- E. Coordinate wall and roof sheathing installation with flashing and joint-sealant installation so these materials are installed in sequence and manner that prevent exterior moisture from passing through completed assembly.
- F. Do not bridge building expansion joints; cut and space edges of panels to match spacing of structural support elements.
- G. Coordinate sheathing installation with installation of materials installed over sheathing so sheathing is not exposed to precipitation or left exposed at end of the workday when rain is forecast.

3.2 WOOD STRUCTURAL PANEL INSTALLATION

- A. General: Comply with applicable recommendations in APA Form No. E30, "Engineered Wood Construction Guide," for types of structural-use panels and applications indicated.
- B. Fastening Methods: Fasten panels as indicated below:
 - 1. Wall and Roof Sheathing:
 - a. Nail to wood framing. Apply a continuous bead of glue to framing members at edges of wall sheathing panels.
 - b. Space panels 1/8 inch (3 mm) apart at edges and ends.

END OF SECTION 061600

SECTION 072100 - THERMAL INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Extruded polystyrene foam-plastic board.
 - 2. Glass-fiber blanket (batt).
- B. Related Requirements:
 - 1. Section 074113.16 "Standing Seam Metal Roof" for insulation specified as part of roofing construction.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.4 INFORMATIONAL SUBMITTALS

- A. Product Test Reports: For each product, for tests performed by a qualified testing agency.
- B. Evaluation Reports: For foam-plastic insulation, from ICC-ES.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Protect insulation materials from physical damage and from deterioration due to moisture, soiling, and other sources. Store inside and in a dry location. Comply with manufacturer's written instructions for handling, storing, and protecting during installation.
- B. Protect foam-plastic board insulation as follows:
 - 1. Do not expose to sunlight except to necessary extent for period of installation and concealment.
 - 2. Protect against ignition at all times. Do not deliver foam-plastic board materials to Project site until just before installation time.

3. Quickly complete installation and concealment of foam-plastic board insulation in each area of construction.

PART 2 - PRODUCTS

2.1 EXTRUDED POLYSTYRENE FOAM-PLASTIC BOARD

- A. Extruded Polystyrene Board, Type IV: ASTM C 578, Type IV, 25-psi (173-kPa) minimum compressive strength; unfaced; maximum flame-spread and smoke-developed indexes of 25 and 450, respectively, per ASTM E 84.
 - 1. Fire Propagation Characteristics: Passes NFPA 285 testing as part of an approved assembly.

2.2 GLASS-FIBER BLANKET (BATT)

A. Glass-Fiber Blanket (Batt), Unfaced: ASTM C 665, Type I; with maximum flame-spread and smoke-developed indexes of 25 and 50, respectively, per ASTM E 84; passing ASTM E 136 for combustion characteristics.

2.3 INSULATION FASTENERS

- B. Adhesively Attached, Spindle-Type Anchors: Plate welded to projecting spindle; capable of holding insulation of specified thickness securely in position with self-locking washer in place.
 - 1. Plate: Perforated, galvanized carbon-steel sheet, 0.030 inch (0.762 mm) thick by 2 inches (50 mm) square.
 - 2. Spindle: Copper-coated, low-carbon steel; fully annealed; 0.105 inch (2.67 mm) in diameter; length to suit depth of insulation.
- C. Anchor Adhesive: Product with demonstrated capability to bond insulation anchors securely to substrates without damaging insulation, fasteners, or substrates.

2.3 ACCESSORIES

- A. Insulation for Miscellaneous Voids:
 - 1. Glass-Fiber Insulation: ASTM C 764, Type II, loose fill; with maximum flame-spread and smoke-developed indexes of 5, per ASTM E 84.
 - 2. Spray Polyurethane Foam Insulation: ASTM C 1029, Type II, closed cell, with maximum flame-spread and smoke-developed indexes of 75 and 450, respectively, per ASTM E 84.

PART 3 - EXECUTION

3.1 **PREPARATION**

A. Clean substrates of substances that are harmful to insulation, including removing projections capable of puncturing insulation or vapor retarders, or that interfere with insulation attachment.

3.2 INSTALLATION, GENERAL

- A. Comply with insulation manufacturer's written instructions applicable to products and applications.
- B. Install insulation that is undamaged, dry, and unsolled and that has not been left exposed to ice, rain, or snow at any time.
- C. Extend insulation to envelop entire area to be insulated. Fit tightly around obstructions and fill voids with insulation. Remove projections that interfere with placement.
- D. Provide sizes to fit applications and selected from manufacturer's standard thicknesses, widths, and lengths. Apply single layer of insulation units unless multiple layers are otherwise shown or required to make up total thickness or to achieve R-value.

3.3 INSTALLATION OF FOUNDATION WALL INSULATION

- A. Butt panels together for tight fit.
- B. Anchor Installation: Install board insulation on concrete substrates by adhesively attached, spindle-type insulation anchors as follows:
 - 1. Fasten insulation anchors to concrete substrates with insulation anchor adhesive according to anchor manufacturer's written instructions. Space anchors according to insulation manufacturer's written instructions for insulation type, thickness, and application.
 - 2. Apply insulation standoffs to each spindle to create cavity width indicated on Drawings between concrete substrate and insulation.
 - 3. After adhesive has dried, install board insulation by pressing insulation into position over spindles and securing it tightly in place with insulation-retaining washers, taking care not to compress insulation.
 - 4. Where insulation will not be covered by other building materials, apply capped washers to tips of spindles.
- C. Adhesive Installation: Install with adhesive or press into tacky waterproofing or dampproofing according to manufacturer's written instructions.

3.4 INSTALLATION OF INSULATION IN FRAMED CONSTRUCTION

- A. Blanket (Batt) Insulation: Install in cavities formed by framing members according to the following requirements:
 - 1. Use insulation widths and lengths that fill the cavities formed by framing members. If more than one length is required to fill the cavities, provide lengths that will produce a snug fit between ends.
 - 2. Place insulation in cavities formed by framing members to produce a friction fit between edges of insulation and adjoining framing members.
 - 3. Maintain 3-inch (76-mm) clearance of insulation around recessed lighting fixtures not rated for or protected from contact with insulation.
 - 4. Attics: Install eave ventilation troughs between roof framing members in insulated attic spaces at vented eaves.
 - 5. For metal-framed wall cavities where cavity heights exceed 96 inches (2438 mm), support unfaced blankets mechanically and support faced blankets by taping flanges of insulation to flanges of metal studs.
- B. Miscellaneous Voids: Install insulation in miscellaneous voids and cavity spaces where required to prevent gaps in insulation using the following materials:
 - 1. Glass-Fiber Insulation: Compact to approximately 40 percent of normal maximum volume equaling a density of approximately 2.5 lb/cu. ft. (40 kg/cu. m).
 - 2. Spray Polyurethane Insulation: Apply according to manufacturer's written instructions.

3.5 **PROTECTION**

A. Protect installed insulation from damage due to harmful weather exposures, physical abuse, and other causes. Provide temporary coverings or enclosures where insulation is subject to abuse and cannot be concealed and protected by permanent construction immediately after installation.

END OF SECTION 072100

SECTION 072500 – WEATHER BARRIERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes self-adhering, water resistive, vapor permeable weather barriers.
- B. Related Requirements:
 - 1. Section 061600 "Sheathing" for wall sheathings and wall sheathing joint-and-penetration treatments.

1.3 DEFINITIONS

- A. Weather-Barrier Material: A primary element that provides a continuous barrier to the movement of air.
- B. Weather-Barrier Accessory: A transitional component of the weather barrier that provides continuity.
- C. Weather-Barrier Assembly: The collection of weather-barrier materials and accessories applied to an opaque wall, including joints and junctions to abutting construction, to control moisture and air movement through the wall.

1.4 PREINSTALLATION MEETINGS

- A. Preinstallation Conference: Conduct conference at Project site.
 - 1. Review weather-barrier requirements and installation, special details, mockups, weatherleakage and bond testing, weather-barrier protection, and work scheduling that covers weather barriers.

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include manufacturer's written instructions for evaluating, preparing, and treating each substrate; technical data; and tested physical and performance properties of products.

- B. Shop Drawings: For weather-barrier assemblies.
 - 1. Show locations and extent of weather barrier materials, accessories, and assemblies specific to Project conditions.
 - 2. Include details for substrate joints and cracks, counterflashing strips, penetrations, inside and outside corners, terminations, and tie-ins with adjoining construction.
 - 3. Include details of interfaces with other materials that form part of weather barrier.

1.6 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer.
- B. Product Certificates: From weather-barrier manufacturer, certifying compatibility of weather barrier and accessory materials with Project materials that connect to or that come in contact with weather barrier.
- C. Product Test Reports: For each weather-barrier assembly, for tests performed by a qualified testing agency.
- D. Field quality-control reports.

1.7 QUALITY ASSURANCE

- A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.
 - 1. Installer shall be licensed by ABAA according to ABAA's Quality Assurance Program and shall employ ABAA-certified installers and supervisors on Project.
- B. Mockups: Build mockups to set quality standards for materials and execution.
 - 1. Build integrated mockups of exterior wall assembly minimum 6 by 6 foot, incorporating backup wall construction, external cladding, window, storefront, door frame and sill, insulation, ties and other penetrations, and flashing to demonstrate surface preparation, crack and joint treatment, application of weather barriers, and sealing of gaps, terminations, and penetrations of weather-barrier assembly.
 - a. Coordinate construction of mockups to permit inspection and testing of weather barrier before external insulation and cladding are installed.
 - b. Include junction with roofing membrane, building corner condition, and foundation wall intersection.
 - c. If Architect determines mockups do not comply with requirements, reconstruct mockups and apply weather barrier until mockups are approved.
 - 2. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 - 3. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.8 DELIVERY, STORAGE, AND HANDLING

- A. Remove and replace liquid materials that cannot be applied within their stated shelf life.
- B. Protect stored materials from direct sunlight.

1.9 FIELD CONDITIONS

- A. Environmental Limitations: Apply weather barrier within the range of ambient and substrate temperatures recommended in writing by weather-barrier manufacturer.
 - 1. Protect substrates from environmental conditions that affect weather-barrier performance.
 - 2. Do not apply weather barrier to a damp or wet substrate or during snow, rain, fog, or mist.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Source Limitations: Obtain primary weather-barrier materials and weather-barrier accessories from single source from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

A. Weather-Barrier Performance: Weather-barrier assembly and seals with adjacent construction shall be capable of performing as a continuous weather barrier and as a liquid-water drainage plane flashed to discharge to the exterior incidental condensation or water penetration. Weather-barrier assemblies shall be capable of accommodating substrate movement and of sealing substrate expansion and control joints, construction material changes, penetrations, tie-ins to installed waterproofing, and transitions at perimeter conditions without deterioration and air leakage exceeding specified limits.

2.3 SELF-ADHERING SHEET WEATHER BARRIER

- A. Water resistive vapor permeable weather barrier for rainscreen systems: Zero VOC self-adhered vapor permeable weather barrier sheet membrane consisting of multiple layers of UV stabilized membrane.
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide Siga Majvest 500 SA or comparable products by, but not limited to the following:
 - a. Grace, W. R. & Co., Perm-A-Barrier VPS.
 - b. Soprema; Sopraseal Stick VP.
 - c. Vaproshield LLC; WrapShield SA.

- 2. Physical and Performance Properties:
 - a. Air Leakage: Maximum 0.00006 cfm/sq. ft. at 1.57 psf when tested in accordance with ASTM E 2178
 - b. Water Vapor Permeance tested to ASTM E 96 Method B: minimum 15 perms.
 - c. Water Resistance tested to AATCC 127, 22 inches (550 mm) hydrostatic head for 5 hours: No leakage.
 - d. Tensile Strength tested to ASTM D 882: 39 lbf/inch, machine direction; 38 lbf/inch, cross-machine direction
 - e. Application Temperature: Ambient temperature must be above 20 degrees F
 - f. Surface Burning Characteristics tested to ASTM E 84: Class A.
 - g. UV Resistance: Can be exposed to sunlight for 180 days according to manufacturer's written instructions.

2.4 ACCESSORY MATERIALS

- A. Requirement: Provide primers, transition strips, termination strips, joint sealants, counterflashing strips, flashing sheets and metal termination bars, termination mastic, substrate patching materials, adhesives, tapes, foam sealants, lap sealants, and other accessory materials that are recommended in writing by weather-barrier manufacturer to produce a complete weather-barrier assembly and that are compatible with primary weather-barrier material and adjacent construction to which they may seal.
- B. Vinyl extrusion with pre-formed fastener and moisture drainage channels configured to create a ventilated airspace between wall cladding and weather-resistive weather barrier.
- C. Penetration sealant: Provide sealant for penetrations as recommended by manufacturer and as specified in Section 079200 "Joint Sealants".

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements and other conditions affecting performance of the Work.
 - 1. Verify that substrates are sound and free of oil, grease, dirt, excess mortar, or other contaminants.
 - 2. Verify that substrates have cured and aged for minimum time recommended in writing by weather-barrier manufacturer.
 - 3. Verify that substrates are visibly dry and free of moisture.
 - 4. Verify that masonry joints are flush and completely filled with mortar.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 SURFACE PREPARATION

- A. Clean, prepare, treat, fill, and seal substrate and joints and cracks in substrate according to manufacturer's written instructions and details. Provide clean, dust-free, and dry substrate for weather-barrier application.
- B. Mask off adjoining surfaces not covered by weather barrier to prevent spillage and overspray affecting other construction.
- C. Remove grease, oil, bitumen, form-release agents, paints, curing compounds, and other penetrating contaminants or film-forming coatings from concrete.
- D. Remove fins, ridges, mortar, and other projections and fill honeycomb, aggregate pockets, holes, and other voids in concrete with substrate-patching membrane.
- E. Remove excess mortar from masonry ties, shelf angles, and other obstructions.
- F. At changes in substrate plane, apply sealant or termination mastic beads at sharp corners and edges to form a smooth transition from one plane to another.
- G. Cover gaps in substrate plane and form a smooth transition from one substrate plane to another with stainless-steel sheet mechanically fastened to structural framing to provide continuous support for weather barrier.
- H. Bridge isolation joints, expansion joints and discontinuous wall-to-wall, deck-to-wall, and deck-to-deck joints with weather-barrier accessory material that accommodates joint movement according to manufacturer's written instructions and details.

3.3 INSTALLATION

- A. Install materials according to weather-barrier manufacturer's written instructions and details and according to recommendations in ASTM D 6135 to form a seal with adjacent construction and ensure continuity of air and water barrier.
 - 1. When ambient and substrate temperatures range between 25 and 40 deg F (minus 4 and plus 5 deg C), install self-adhering, weather-barrier sheet produced for low-temperature application. Do not install low-temperature sheet if ambient or substrate temperature is higher than 60 deg F (16 deg C).
 - 2. Unless manufacturer recommends in writing against priming, apply primer to substrates at required rate and allow it to dry.
- B. Prepare, treat, and seal inside and outside corners and vertical and horizontal surfaces at terminations and penetrations with termination mastic and according to ASTM D 6135.
- C. Apply and firmly adhere weather-barrier sheets over area to receive weather barrier. Accurately align sheets and maintain uniform 2-1/2-inch- (64-mm-) minimum lap widths and end laps. Overlap and seal seams, and stagger end laps to ensure airtight installation.
 - 1. Apply sheets in a shingled manner to shed water.
 - 2. Roll sheets firmly to enhance adhesion to substrate.

- D. Apply continuous weather-barrier sheets over accessory strips bridging substrate cracks, construction, and contraction joints.
- E. Seal top of through-wall flashings to weather-barrier sheet with an additional 6-inch- (150-mm-) wide, transition strip.
- F. Seal exposed edges of sheet at seams, cuts, penetrations, and terminations not concealed by metal counterflashings or ending in reglets with termination mastic.
- G. Install weather-barrier sheet and accessory materials to form a seal with adjacent construction and to maintain a continuous weather barrier.
 - 1. Coordinate weather-barrier installation with installation of roofing membrane and base flashing to ensure continuity of weather barrier with roofing membrane.
 - 2. Install transition strip on roofing membrane or base flashing so that a minimum of 3 inches (75 mm) of coverage is achieved over each substrate.
- H. Connect and seal exterior wall weather-barrier sheet continuously to roofing-membrane weather barrier, concrete below-grade structures, floor-to-floor construction, exterior glazing and window systems, glazed curtain-wall systems, storefront systems, exterior louvers, exterior door framing, and other construction used in exterior wall openings, using accessory materials.
- I. At end of each working day, seal top edge of weather-barrier material to substrate with termination mastic.
- J. Apply joint sealants forming part of weather-barrier assembly within manufacturer's recommended application temperature ranges. Consult manufacturer when sealant cannot be applied within these temperature ranges.
- K. Wall Openings: Prime concealed, perimeter frame surfaces of windows, curtain walls, storefronts, and doors. Apply transition strip so that a minimum of 3 inches (75 mm) of coverage is achieved over each substrate. Maintain 3 inches (75 mm) of contact over firm bearing to perimeter frames, with not less than 1 inch (25 mm) of full contact.
 - 1. Transition Strip: Roll firmly to enhance adhesion.
- L. Fill gaps in perimeter frame surfaces of windows, curtain walls, storefronts, doors, and miscellaneous penetrations of weather-barrier material with foam sealant.
- M. Repair punctures, voids, and deficient lapped seams in weather barrier. Slit and flatten fishmouths and blisters. Patch with weather-barrier sheet extending 6 inches (150 mm) beyond repaired areas in all directions.
- N. Do not cover weather barrier until it has been tested and inspected by testing agency.
- O. Correct deficiencies in or remove weather barrier that does not comply with requirements; repair substrates and reapply weather-barrier components.

3.4 FIELD QUALITY CONTROL

- A. ABAA Quality Assurance Program: Perform examinations, preparation, installation, testing, and inspections under ABAA's Quality Assurance Program.
- B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- C. Inspections: Weather-barrier materials, accessories, and installation are subject to inspection for compliance with requirements. Inspections may include the following:
 - 1. Continuity of weather-barrier system has been achieved throughout the building envelope with no gaps or holes.
 - 2. Continuous structural support of weather-barrier system has been provided.
 - 3. Masonry and concrete surfaces are smooth, clean, and free of cavities, protrusions, and mortar droppings.
 - 4. Site conditions for application temperature and dryness of substrates have been maintained.
 - 5. Maximum exposure time of materials to UV deterioration has not been exceeded.
 - 6. Laps in sheet materials have complied with the minimum requirements and have been shingled in the correct direction (or mastic applied on exposed edges), with no fishmouths.
 - 7. Weather barrier has been firmly adhered to substrate.
 - 8. Compatible materials have been used.
 - 9. Transitions at changes in direction and structural support at gaps have been provided.
 - 10. Connections between assemblies (weather barrier and sealants) have complied with requirements for cleanliness, surface preparation and priming, structural support, integrity, and continuity of seal.
 - 11. All penetrations have been sealed.
- D. Tests: As determined by testing agency from among the following tests:
 - 1. Weather-Leakage-Location Testing: Weather-barrier assemblies will be tested for evidence of air leakage according to ASTM E 1186, chamber pressurization or depressurization with smoke tracers or ASTM E 1186, chamber depressurization using detection liquids.
 - 2. Weather-Leakage-Volume Testing: Weather-barrier assemblies will be tested for weatherleakage rate according to ASTM E 783 or ASTM E 2357.
 - 3. Adhesion Testing: Weather-barrier assemblies will be tested for required adhesion to substrate according to ASTM D 4541 for each 600 sq. ft. (56 sq. m) of installed weather barrier or part thereof.
- E. Weather barriers will be considered defective if they do not pass tests and inspections.
 - 1. Apply additional weather-barrier material, according to manufacturer's written instructions, where inspection results indicate insufficient thickness.
 - 2. Remove and replace deficient weather-barrier components for retesting as specified above.
- F. Repair damage to weather barriers caused by testing; follow manufacturer's written instructions.
- G. Prepare test and inspection reports.

3.5 CLEANING AND PROTECTION

- A. Protect wall areas covered with self-adhered water-resistive vapor permeable weather barrier from damage due to construction activities, high wind conditions, and extended exposure to inclement weather.
- B. Review condition of self-adhered water-resistive vapor permeable weather barrier prior to installation of cladding. Repair, or remove and replace damaged sections with new membrane.
- C. Recommend to cap and protect exposed back-up walls against wet weather conditions during and after application of membrane, including wall openings and construction activity above completed self-adhered water-resistive vapor permeable weather barrier installations.
- D. Remove and replace water-resistive weather barrier membrane affected by chemical spills or surfactants.
- E. Clean spills, stains, and soiling from construction that would be exposed in the completed Work, using cleaning agents and procedures recommended in writing by manufacturer of affected construction.

END OF SECTION 072500

SECTION 072600 - VAPOR RETARDERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Polyamide film sheet vapor retarder.
- B. Related Requirements:
 - 1. Section 033000 "Cast-in-Place Concrete" for under-slab vapor barriers.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.4 INFORMATIONAL SUBMITTALS

A. Product Test Reports: For each product, for tests performed by a qualified testing agency.

PART 2 - PRODUCTS

2.1 SHEET VAPOR RETARDER

- A. Basis-of-Design Product: Siga Majrex Vapor Retarder, by SIGA; www.siga.swiss.
- B. Other Acceptable Product: MemBrain by CertainTeed Corp., Div. of Saint Gobain; www.certainteed.com.
- C. Description:
 - 1. Material: a modified polyethylene/polyamide film or polyamide film that changes its permeability with ambient humidity conditions, all while providing a continuous air seal. The product's permeance is 1 perm or less when tested in accordance with ASTM E96, dry cup method, and increases to greater than 10 perms using the wet cup method.
- D. Applications: Provide on interior side of exterior wall framing over unfaced, internal wall cavity insulation.

2.2 ACCESSORIES

- A. Vapor-Retarder Tape: Pressure-sensitive tape of type recommended by vapor-retarder manufacturer for sealing joints and penetrations in vapor retarder.
 - 1. Basis-of-Design tape product for Siga Majrex: Siga Rissan tape.
- B. Adhesive for Vapor Retarders: Product recommended by vapor-retarder manufacturer and has demonstrated capability to bond vapor retarders securely to substrates indicated.
- C. Vapor-Retarder Fasteners: Pancake-head, self-tapping steel drill screws; with fender washers.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean substrates of substances that are harmful to vapor retarders, including removing projections capable of puncturing vapor retarders.

3.2 INSTALLATION OF VAPOR RETARDERS ON FRAMING

- A. Place vapor retarders on side of construction indicated on Drawings.
- B. Extend vapor retarders to extremities of areas to protect from vapor transmission. Secure vapor retarders in place with adhesives, vapor retarder fasteners, or other anchorage system as recommended by manufacturer. Extend vapor retarders to cover miscellaneous voids in insulated substrates, including those filled with loose-fiber insulation.
- C. Seal vertical joints in vapor retarders over framing by lapping no fewer than two studs and sealing with vapor-retarder tape according to vapor-retarder manufacturer's written instructions. Locate all joints over framing members or other solid substrates.
- D. Seal joints caused by pipes, conduits, electrical boxes, and similar items penetrating vapor retarders with vapor-retarder tape to create an airtight seal between penetrating objects and vapor retarders.
- E. Repair tears or punctures in vapor retarders immediately before concealment by other work. Cover with vapor-retarder tape or another layer of vapor retarders.

3.3 **PROTECTION**

A. Protect vapor retarders from damage until concealed by permanent construction.

END OF SECTION 072600

SECTION 074113.16 - STANDING-SEAM METAL ROOF

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes standing-seam metal panels for roof applications.
- B. Related Sections:
 - 1. Section 076200 "Sheet Metal Flashing and Trim."

1.3 ACTION SUBMITTALS

- A. Product Data:
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each type of panel and accessory.
- B. Shop Drawings:
 - 1. Include fabrication and installation layouts of metal roof; details of edge conditions, joints, panel profiles, corners, anchorages, attachment system, trim, flashings, closures, and accessories; and special details.
 - 2. Accessories: Include details of the flashing, trim, and anchorage systems, at a scale of not less than 1-1/2 inches per 12 inches (1:10).
- C. Samples for Initial Selection: For each type of metal panel indicated with factory-applied color finishes.
 - 1. Include similar Samples of trim and accessories involving color selection.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer.
- B. Product Test Reports: For each product, for tests performed by a qualified testing agency.
- C. Field quality-control reports.
- D. Sample Warranties: For special warranties.

STANDING-SEAM METAL ROOF

1.5 CLOSEOUT SUBMITTALS

A. Maintenance Data: For metal panels to include in maintenance manuals.

1.6 QUALITY ASSURANCE

- A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer.
- B. UL-Certified, Portable Roll-Forming Equipment: Not permitted.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Deliver components, metal panels, and other manufactured items so as not to be damaged or deformed. Package metal panels for protection during transportation and handling.
- B. Unload, store, and erect metal panels in a manner to prevent bending, warping, twisting, and surface damage.
- C. Stack metal panels horizontally on platforms or pallets, covered with suitable weathertight and ventilated covering. Store metal panels to ensure dryness, with positive slope for drainage of water. Do not store metal panels in contact with other materials that might cause staining, denting, or other surface damage.
- D. Retain strippable protective covering on metal panels during installation.

1.8 FIELD CONDITIONS

A. Weather Limitations: Proceed with installation only when existing and forecasted weather conditions permit assembly of metal panels to be performed according to manufacturers' written instructions and warranty requirements.

1.9 COORDINATION

- A. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.
- B. Coordinate metal panel installation with rain drainage work, flashing, trim, construction of soffits, and other adjoining work to provide a leakproof, secure, and noncorrosive installation.

1.10 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of metal panel systems that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:

- a. Structural failures including rupturing, cracking, or puncturing.
- b. Deterioration of metals and other materials beyond normal weathering.
- 2. Warranty Period: Two years from date of Substantial Completion.
- B. Special Warranty on Panel Finishes: Manufacturer's standard form in which manufacturer agrees to repair finish or replace metal panels that show evidence of deterioration of factory-applied finishes within specified warranty period.
 - 1. Exposed Panel Finish: Deterioration includes, but is not limited to, the following:
 - a. Color fading more than 5 Hunter units when tested according to ASTM D 2244.
 - b. Chalking in excess of a No. 8 rating when tested according to ASTM D 4214.
 - c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.
 - 2. Finish Warranty Period: 30 years from date of Substantial Completion.
- C. Special Weathertightness Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace standing-seam metal roof panel assemblies that fail to remain weathertight, including leaks, within specified warranty period.
 - 1. Warranty Period: 20 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Structural Performance: Provide metal panel systems capable of withstanding the effects of the following loads, based on testing according to ASTM E 1592:
 - 1. Wind Loads: As indicated on Drawings.
 - 2. Other Design Loads: As indicated on Drawings.
 - 3. Deflection Limits: For wind loads, no greater than 1/180 of the span.
- B. Air Infiltration: Air leakage of not more than 0.06 cfm/sq. ft. (0.3 L/s per sq. m) when tested according to ASTM E 1680 or ASTM E 283 at the following test-pressure difference:
 - 1. Test-Pressure Difference: 6.24 lbf/sq. ft. (300 Pa).
- C. Water Penetration under Static Pressure: No water penetration when tested according to ASTM E 1646 or ASTM E 331 at the following test-pressure difference:
 - 1. Test-Pressure Difference: 6.24 lbf/sq. ft. (300 Pa).
- D. Hydrostatic-Head Resistance: No water penetration when tested according to ASTM E 2140.
- E. Wind-Uplift Resistance: Provide metal roof panel assemblies that comply with UL 580 for wind-uplift-resistance class indicated.
 - 1. Uplift Rating: UL 90.

- F. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes by preventing buckling, opening of joints, overstressing of components, failure of joint sealants, failure of connections, and other detrimental effects. Base calculations on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.
 - 1. Temperature Change (Range): 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.

2.2 STANDING-SEAM METAL ROOF PANELS

- A. General: Provide factory-formed metal roof panels designed to be installed by lapping and interconnecting raised side edges of adjacent panels with joint type indicated and mechanically attaching panels to supports using concealed clips in side laps. Include clips, cleats, pressure plates, and accessories required for weathertight installation.
 - 1. Steel Panel Systems: Unless more stringent requirements are indicated, comply with ASTM E 1514.
- B. Vertical-Rib, Seamed-Joint, Standing-Seam Metal Roof Panels (MRP-1): Formed with vertical ribs at panel edges and intermediate stiffening ribs symmetrically spaced between ribs; designed for sequential installation by mechanically attaching panels to supports using concealed clips located under one side of panels, engaging opposite edge of adjacent panels, and mechanically seaming panels together.
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide Span-Lok HP by AEP Span, or a comparable product by one of the following, subject to requirements:
 - a. PAC Clad Peterson; a Carlisle Company
 - b. Berridge Manufacturing Company.
 - c. MBCI; a division of NCI Group, Inc.
 - d. Metal Sales Manufacturing Corporation.
 - e. Morin A Kingspan Group Company.
 - f. Approved equal.
 - Metallic-Coated Steel Sheet: Zinc-coated (galvanized) steel sheet complying with ASTM A 653/A 653M, G90 (Z275) coating designation, or aluminum-zinc alloy-coated steel sheet complying with ASTM A 792/A 792M, Class AZ50 (Class AZM150) coating designation; structural quality. Prepainted by the coil-coating process to comply with ASTM A 755/A 755M.
 - a. Nominal Thickness: 22 gauge, uncoated thickness. Provide 24-guage at trim where acceptable to manufacturer and complying with performance requirements.
 - b. Exterior Finish: Not less than two-coat fluoropolymer.
 - c. Color: Architect to select from manufacturer's full range of colors.
 - 3. Clips: One-piece fixed Two-piece floating to accommodate thermal movement. Provide one-piece fixed where performance and application require.
 - a. Material: Minimum 0.064-inch- (1.63-mm-) nominal thickness, zinc-coated (galvanized) or aluminum-zinc alloy-coated steel sheet.

- 4. Panel Coverage: 16 inches.
- 5. Panel Height: 2 inches.

2.3 UNDERLAYMENT MATERIALS

- A. Self-Adhering, High-Temperature Underlayment: Provide self-adhering, cold-applied, sheet underlayment, a minimum of 30 mils (0.76 mm) thick, consisting of slip-resistant, polyethylene-film top surface laminated to a layer of butyl or SBS-modified asphalt adhesive, with release-paper backing. Provide primer when recommended by underlayment manufacturer.
 - 1. Thermal Stability: Stable after testing at 240 deg F (116 deg C); ASTM D 1970.
 - 2. Low-Temperature Flexibility: Passes after testing at minus 20 deg F (29 deg C); ASTM D 1970.
 - 3. Products: Subject to compliance with requirements, provide the following:
 - a. Carlisle 300HT.
 - b. Soprema Lastobond Shield HT.
 - c. Henry Company; Blueskin PE200 HT.

2.4 MISCELLANEOUS MATERIALS

- A. Sub-framing and Furring: See Section 074011 "Exterior Finish Support System" for wall panel support for attachment at wall panels.
 - 1. Provide metal furring only where indicated on Drawings.
 - a. Metal Furring: ASTM C 645, cold-formed, metallic-coated steel sheet, ASTM A 653/A 653M, G115 coating designation. Provide manufacturer's standard sections as required for support and alignment of metal panel system.
- B. Panel Accessories: Provide components required for a complete, weathertight panel system including trim, copings, fasciae, mullions, sills, corner units, clips, flashings, sealants, gaskets, fillers, closure strips, and similar items. Match material and finish of metal panels unless otherwise indicated.
 - 1. Closures: Provide closures at eaves and ridges, fabricated of same metal as metal panels.
 - 2. Backing Plates: Provide metal backing plates at panel end splices, fabricated from material recommended by manufacturer.
 - 3. Closure Strips: Closed-cell, expanded, cellular, rubber or crosslinked, polyolefin-foam or closed-cell laminated polyethylene; minimum 1-inch- (25-mm-) thick, flexible closure strips; cut or premolded to match metal panel profile. Provide closure strips where indicated or necessary to ensure weathertight construction.
- C. Flashing and Trim: Provide flashing and trim formed from same material as metal panels as required to seal against weather and to provide finished appearance. Locations include, but are not limited to, eaves, rakes, corners, bases, framed openings, ridges, fasciae, and fillers. Finish flashing and trim with same finish system as adjacent metal panels.

- D. Gutters: Formed from same material as roof panels, complete with end pieces, outlet tubes, and other special pieces as required. Fabricate in minimum 96-inch- (2400-mm-) long sections, of size and metal thickness according to SMACNA's "Architectural Sheet Metal Manual." Furnish gutter supports spaced a maximum of 36 inches (914 mm) o.c., fabricated from same metal as gutters. Provide wire ball strainers of compatible metal at outlets. Finish gutters to match metal roof panels roof fascia and rake trim.
- E. Downspouts: Formed from same material as roof panels. Fabricate in 10-foot- (3-m-) long sections, complete with formed elbows and offsets, of size and metal thickness according to SMACNA's "Architectural Sheet Metal Manual." Finish downspouts to match gutters.
- F. Panel Fasteners: Self-tapping screws designed to withstand design loads.
- G. Panel Sealants: Provide sealant type recommended by manufacturer that are compatible with panel materials, are nonstaining, and do not damage panel finish.
 - 1. Sealant Tape: Pressure-sensitive, 100 percent solids, gray polyisobutylene compound sealant tape with release-paper backing. Provide permanently elastic, nonsag, nontoxic, nonstaining tape 1/2 inch (13 mm) wide and 1/8 inch (3 mm) thick.
 - 2. Joint Sealant: ASTM C 920; elastomeric polyurethane or silicone sealant; of type, grade, class, and use classifications required to seal joints in metal panels and remain weathertight; and as recommended in writing by metal panel manufacturer.
 - 3. Butyl-Rubber-Based, Solvent-Release Sealant: ASTM C 1311.

2.5 FABRICATION

- A. General: Fabricate and finish metal panels and accessories at the factory, by manufacturer's standard procedures and processes, as necessary to fulfill indicated performance requirements demonstrated by laboratory testing. Comply with indicated profiles and with dimensional and structural requirements.
- B. Provide panel profile, including major ribs and intermediate stiffening ribs, if any, for full length of panel.
- C. Fabricate metal panel joints with factory-installed captive gaskets or separator strips that provide a weather tight seal and prevent metal-to-metal contact, and that minimize noise from movements.
- D. Sheet Metal Flashing and Trim: Fabricate flashing and trim to comply with manufacturer's recommendations and recommendations in SMACNA's "Architectural Sheet Metal Manual" that apply to design, dimensions, metal, and other characteristics of item indicated.
 - 1. Form exposed sheet metal accessories that are without excessive oil canning, buckling, and tool marks and that are true to line and levels indicated, with exposed edges folded back to form hems.
 - 2. Seams for Aluminum: Fabricate nonmoving seams with flat-lock seams. Form seams and seal with epoxy seam sealer. Rivet joints for additional strength.
 - 3. Seams for Other Than Aluminum: Fabricate nonmoving seams in accessories with flatlock seams. Tin edges to be seamed, form seams, and solder.
 - 4. Sealed Joints: Form nonexpansion, but movable, joints in metal to accommodate sealant and to comply with SMACNA standards.

- 5. Conceal fasteners and expansion provisions where possible. Exposed fasteners are not allowed on faces of accessories exposed to view.
- 6. Fabricate cleats and attachment devices from same material as accessory being anchored or from compatible, noncorrosive metal recommended in writing by metal panel manufacturer.
 - a. Size: As recommended by SMACNA's "Architectural Sheet Metal Manual" or metal panel manufacturer for application, but not less than thickness of metal being secured.

2.6 FINISHES

- A. Protect mechanical and painted finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- B. Appearance of Finished Work: Variations in appearance of abutting or adjacent pieces are acceptable if they are within one-half of the range of approved Samples. Noticeable variations in same piece are unacceptable. Variations in appearance of other components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.
- C. Steel Panels and Accessories:
 - 1. Two-Coat Fluoropolymer: AAMA 621. Fluoropolymer finish containing not less than 70 percent PVDF resin by weight in color coat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.
 - 2. Concealed Finish: Apply pretreatment and manufacturer's standard white or light-colored acrylic or polyester backer finish consisting of prime coat and wash coat with a minimum total dry film thickness of 0.5 mil (0.013 mm).

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances, metal panel supports, and other conditions affecting performance of the Work.
 - 1. Examine primary and secondary roof framing to verify that rafters, purlins, angles, channels, and other structural panel support members and anchorages have been installed within alignment tolerances required by metal roof panel manufacturer.
 - 2. Examine solid roof sheathing to verify that sheathing joints are supported by framing or blocking and that installation is within flatness tolerances required by metal roof panel manufacturer.
 - a. Verify that air- or water-resistive barriers have been installed over sheathing or backing substrate to prevent air infiltration or water penetration.

- B. Examine roughing-in for components and systems penetrating metal panels to verify actual locations of penetrations relative to seam locations of metal panels before installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Miscellaneous Supports: Install subframing, furring, and other miscellaneous panel support members and anchorages according to ASTM C 754 and metal panel manufacturer's written recommendations.

3.3 UNDERLAYMENT INSTALLATION

- A. Self-Adhering Sheet Underlayment: Apply primer if required by manufacturer. Comply with temperature restrictions of underlayment manufacturer for installation. Apply at locations indicated below, wrinkle free, in shingle fashion to shed water, and with end laps of not less than 6 inches (152 mm) staggered 24 inches (610 mm) between courses. Overlap side edges not less than 3-1/2 inches (90 mm). Extend underlayment into gutter trough. Roll laps with roller. Cover underlayment within 14 days.
 - 1. Apply over the entire roof surface.
- B. Slip Sheet: Apply slip sheet over underlayment before installing metal roof panels.
- C. Flashings: Install flashings to cover underlayment to comply with requirements specified in Section 076200 "Sheet Metal Flashing and Trim."

3.4 METAL PANEL INSTALLATION

- A. General: Install metal panels according to manufacturer's written instructions in orientation, sizes, and locations indicated. Install panels perpendicular to supports unless otherwise indicated. Anchor metal panels and other components of the Work securely in place, with provisions for thermal and structural movement.
 - 1. Shim or otherwise plumb substrates receiving metal panels.
 - 2. Flash and seal metal panels at perimeter of all openings. Fasten with self-tapping screws. Do not begin installation until air- or water-resistive barriers and flashings that will be concealed by metal panels are installed.
 - 3. Install screw fasteners in predrilled holes.
 - 4. Locate and space fastenings in uniform vertical and horizontal alignment.
 - 5. Install flashing and trim as metal panel work proceeds.
 - 6. Locate panel splices over, but not attached to, structural supports. Stagger panel splices and end laps to avoid a four-panel lap splice condition.
 - 7. Align bottoms of metal panels and fasten with blind rivets, bolts, or self-tapping screws. Fasten flashings and trim around openings and similar elements with self-tapping screws.
 - 8. Provide weathertight escutcheons for pipe- and conduit-penetrating panels.
- B. Fasteners:

- 1. Steel Panels: Use stainless-steel fasteners for surfaces exposed to the exterior; use galvanized-steel fasteners for surfaces exposed to the interior.
- C. Anchor Clips: Anchor metal roof panels and other components of the Work securely in place, using manufacturer's approved fasteners according to manufacturers' written instructions.
- D. Metal Protection: Where dissimilar metals contact each other or corrosive substrates, protect against galvanic action as recommended in writing by metal panel manufacturer.
- E. Standing-Seam Metal Panel Installation: Fasten metal panels to supports with concealed clips at each standing-seam joint at location, spacing, and with fasteners recommended in writing by manufacturer.
 - 1. Install clips to supports with self-tapping fasteners.
 - 2. Install pressure plates at locations indicated in manufacturer's written installation instructions.
 - 3. Seamed Joint: Crimp standing seams with manufacturer-approved, motorized seamer tool so clip, metal roof panel, and factory-applied sealant are completely engaged.
 - 4. Watertight Installation:
 - a. Apply a continuous ribbon of sealant or tape to seal joints of metal panels, using sealant or tape as recommend in writing by manufacturer as needed to make panels watertight.
 - b. Provide sealant or tape between panels and protruding equipment, vents, and accessories.
 - c. At panel splices, nest panels with minimum 6-inch (152-mm) end lap, sealed with sealant and fastened together by interlocking clamping plates.
- F. Accessory Installation: Install accessories with positive anchorage to building and weathertight mounting, and provide for thermal expansion. Coordinate installation with flashings and other components, including cavity vent where indicated.
 - 1. Install components required for a complete metal panel system including trim, copings, corners, seam covers, flashings, sealants, gaskets, fillers, closure strips, and similar items. Provide types indicated by metal roof panel manufacturers; or, if not indicated, types recommended by metal roof panel manufacturer.
- G. Flashing and Trim: Comply with performance requirements, manufacturer's written installation instructions, and SMACNA's "Architectural Sheet Metal Manual." Provide concealed fasteners where possible, and set units true to line and level as indicated. Install work with laps, joints, and seams that will be permanently watertight and weather resistant.
 - 1. Install exposed flashing and trim that is without buckling and tool marks, and that is true to line and levels indicated, with exposed edges folded back to form hems. Install sheet metal flashing and trim to fit substrates and achieve waterproof and weather-resistant performance.

- 2. Expansion Provisions: Provide for thermal expansion of exposed flashing and trim. Space movement joints at a maximum of 10 feet (3 m) with no joints allowed within 24 inches (610 mm) of corner or intersection. Where lapped expansion provisions cannot be used or would not be sufficiently weather resistant and waterproof, form expansion joints of intermeshing hooked flanges, not less than 1 inch (25 mm) deep, filled with mastic sealant (concealed within joints).
- H. Gutters: Join sections with riveted and soldered or lapped and sealed joints. Attach gutters to eave with gutter hangers spaced not more than 36 inches (914 mm) o.c. using manufacturer's standard fasteners. Provide end closures and seal watertight with sealant. Provide for thermal expansion.
- I. Downspouts: Join sections with telescoping joints. Provide fasteners designed to hold downspouts securely 1 inch (25 mm) away from walls; locate fasteners at top and bottom and at approximately 60 inches (1524 mm) o.c. in between.
 - 1. Provide elbows at base of downspouts to direct water away from building.
 - 2. Connect downspouts to underground drainage system indicated.
- J. Roof Curbs: Install flashing around bases where they meet metal roof panels.
- K. Pipe Flashing: Form flashing around pipe penetration and metal roof panels. Fasten and seal to metal roof panels as recommended by manufacturer.

3.5 ERECTION TOLERANCES

A. Installation Tolerances: Shim and align metal panel units within installed tolerance of 1/4 inch in 20 feet (6 mm in 6 m) on slope and location lines as indicated and within 1/8-inch (3-mm) offset of adjoining faces and of alignment of matching profiles.

3.6 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect metal roof panel installation, including accessories. Report results in writing.
- B. Remove and replace applications of metal roof panels where tests and inspections indicate that they do not comply with specified requirements.
- C. Additional tests and inspections, at Contractor's expense, are performed to determine compliance of replaced or additional work with specified requirements.
- D. Prepare test and inspection reports.

3.7 CLEANING AND PROTECTION

A. Remove temporary protective coverings and strippable films, if any, as metal panels are installed, unless otherwise indicated in manufacturer's written installation instructions. On completion of metal panel installation, clean finished surfaces as recommended by metal panel manufacturer. Maintain in a clean condition during construction.

B. Replace metal panels that have been damaged or have deteriorated beyond successful repair by finish touchup or similar minor repair procedures.

END OF SECTION 074113.16

SECTION 074646 - FIBER-CEMENT SIDING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes fiber-cement siding.
- B. Related Requirements:
 - 1. Section 061000 "Rough Carpentry" for wood furring, grounds, nailers, and blocking.
 - 2. Section 061600 "Sheathing" for wall sheathing.
 - 3. Section 072713 "Modified Bituminous Sheet Air Barriers"
 - 4. Section 076200 "Sheet Metal Flashing and Trim" for flashing, gutters, and other sheet metal work.
 - 5. Section 079200 "Joint Sealants"

1.3 COORDINATION

A. Coordinate siding installation with flashings and other adjoining construction to ensure proper sequencing.

1.4 PREINSTALLATION MEETINGS

- A. Preinstallation Conference: Conduct conference at Project site
 - 1. Review Panel type size and color, special details, rain screen requirements and integration with flashing and reveals.

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Samples for Verification: For each type, color, texture, and pattern required.
 - 1. 12-inch- (300-mm-) long-by-actual-width Sample of siding.

1.6 INFORMATIONAL SUBMITTALS

- A. Product Certificates: For each type of fiber-cement siding.
- B. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified testing agency, for fiber-cement siding.
- C. Sample Warranty: For special warranty.

1.7 CLOSEOUT SUBMITTALS

A. Maintenance Data: For each type of product, including related accessories, to include in maintenance manuals.

1.8 QUALITY ASSURANCE

- A. Labeling: Provide fiber-cement siding that is tested and labeled according to ASTM C 1186 by a qualified testing agency acceptable to authorities having jurisdiction.
- B. Source Limitations: Obtain each type, color, texture, and pattern of siding and soffit, including related accessories, from single source from single manufacturer.
- C. Pre-installation Conference: Conduct conference at Project Site.

1.9 DELIVERY, STORAGE, AND HANDLING

- A. Deliver and store packaged materials in original containers with labels intact until time of use.
- B. Store materials on elevated platforms, under cover, and in a dry location.

1.10 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace products that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Structural failures including cracking and deforming.
 - b. Deterioration of materials beyond normal weathering.
 - 2. Warranty Period: 50 years.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain products, including related accessories, from single source from single manufacturer.

2.2 FIBER-CEMENT PANEL SIDING

- A. General: ASTM C 1186, Type A, Grade II, fiber-cement board, noncombustible when tested according to ASTM E 136; with a flame-spread index of 25 or less when tested according to ASTM E 84.
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide "Hardie Reveal Plank HZ10 System" products manufactured by James Hardie Building Products, Inc. or comparable product by one of the following:
 - a. CertainTeed Corporation.
 - b. Nichiha
 - 2. Hardie Panel HZ10 Vertical Siding
 - a. Nominal Thickness: Not less than 7/16 inch (8 mm).
 - b. Horizontal Application: As indicated on Drawings.
 - c. Panel Texture: Smooth
 - d. Factory Priming: Manufacturer's standard acrylic primer.

2.3 FIBER-CEMENT LAP SIDING

- A. General: ASTM C 1186, Type A, Grade II, fiber-cement board, noncombustible when tested according to ASTM E 136; with a flame-spread index of 25 or less when tested according to ASTM E 84.
 - 1. Basis-of-Design Product: Subject to compliance with requirements, provide "Hardie Plank HZ10 Lap Siding System" products manufactured by James Hardie Building Products, Inc. or comparable product by one of the following:
 - a. CertainTeed Corporation.
 - b. Nichiha
 - 2. Hardie Plank HZ10 Lap Siding
 - a. Nominal Thickness: Not less than 5/16 inch (8 mm).
 - b. Horizontal Application: As indicated on Drawings.
 - c. Panel Texture: Smooth
 - d. Factory Priming: Manufacturer's standard acrylic primer.

2.4 FURRING STRIPS

- A. General: Matching characteristics of siding material, to provide stand-off furring as component of rainscreen exterior wall assembly.
 - 1. Wood strips Pressure treated 3/4" thick x 1-1/2" wide at 16" o.c. vertically.

2.5 DECORATIVE PROFILES

- A. Aluminum Joint Closures, Reveals and Decorative Corner Profiles: Basis-of-Design Product: Subject to compliance with requirements, provide shapes indicated on Drawings by Fry Reglet Corporation or comparable product by one of the following:
 - 1. Easy Trim Reveals
 - 2. Tamlyn; Xtreme Trim
 - a. Material: 6063 T5 Extruded Aluminum.
 - b. Finishes: Anodized finish, Architectural 200R1 light etch (AA-M32c10A21), clear coat.
 - 1) Thickness of anodic coating shall be tested in accord with ASTM B244-97 and sealed to pass modified dye stain test ASTM B136-84 (1998)
 - c. Profiles:
 - 1) Horizontal and Vertical: As shown on the plans.

2.6 ACCESSORIES

- A. Flashing: Provide metal flashing complying with Section 076200 "Sheet Metal Flashing and Trim" at window and door heads and where indicated.
- B. Fasteners:
 - 1. For fastening to wood, use ribbed bugle-head screws of sufficient length to penetrate a minimum of 1 inch (25 mm) into substrate.
 - 2. Use stainless steel fasteners.
- C. Aluminum Siding Accessories: For accessories not scheduled in Article 2.4 provide starter strips, J mold, H-mold, inside corners, outside corners and other items as indicated in the Drawings from Fiber-Cement Board manufacturer's standard products..
 - 1. Provide accessories made from clear anodized aluminum, unless otherwise indicated.
- D. Venting mesh: Provide UV stable recycled open-weave polyester mesh vent/weep net as part of the exterior wall assembly as indicated on the Drawings.
 - 1. In thickness and layers necessary to fill cavities completely.
 - 2. Color: black.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates for compliance with requirements for installation tolerances and other conditions affecting performance of fiber-cement siding and related accessories.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Clean substrates of projections and substances detrimental to application.
- B. Fabricate siding widths and shapes from standard panels with straight square cuts. Sand smooth any rough edges and spot prime.

3.3 INSTALLATION

- A. General: Comply with manufacturer's written installation instructions applicable to products and applications indicated unless more stringent requirements apply.
 - 1. Do not install damaged components.
 - 2. Provide blind fastening per manufacturer's installation instructions.
- B. Install fiber-cement siding related accessories.
 - 1. Install fasteners no more than 24 inches (600 mm) o.c.
 - 2. Install fasteners no closer than 3/8 inch (10 mm) o.c. to edges of panels OR further away if advised by manufacturer's installation instructions.
 - 3. Fasteners must lie flush with surface of siding, and must be laid out in a regular even pattern.
- C. Install joint sealants as specified in Section 079200 "Joint Sealants" and to produce a weathertight installation.

3.4 ADJUSTING AND CLEANING

- A. Remove damaged, improperly installed, or otherwise defective materials and replace with new materials complying with specified requirements.
- B. Clean finished surfaces according to manufacturer's written instructions and maintain in a clean condition during construction.

END OF SECTION 074646

SECTION 076200 - SHEET METAL FLASHING AND TRIM

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Manufactured through-wall flashing with counterflashing.
 - 2. Formed roof-drainage sheet metal fabrications.
 - 3. Formed low-slope roof sheet metal fabrications.
 - 4. Formed wall sheet metal fabrications.
- B. Related Requirements:
 - 1. Section 061053 "Miscellaneous Rough Carpentry" for wood nailers, curbs, and blocking.

1.3 COORDINATION

- A. Coordinate sheet metal flashing and trim layout and seams with sizes and locations of penetrations to be flashed, and joints and seams in adjacent materials.
- B. Coordinate sheet metal flashing and trim installation with adjoining roofing and wall materials, joints, and seams to provide leakproof, secure, and noncorrosive installation.

1.4 PREINSTALLATION MEETINGS

- A. Preinstallation Conference: Conduct conference at Project site.
 - 1. Review construction schedule. Verify availability of materials, Installer's personnel, equipment, and facilities needed to make progress and avoid delays.
 - 2. Review special roof details, roof drainage, roof-penetration flashing, equipment curbs, and condition of other construction that affect sheet metal flashing and trim.
 - 3. Review requirements for insurance and certificates if applicable.
 - 4. Review sheet metal flashing observation and repair procedures after flashing installation.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product.

SHEET METAL FLASHING AND TRIM

- 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each manufactured product and accessory.
- B. Shop Drawings: For sheet metal flashing and trim.
 - 1. Include plans, elevations, sections, and attachment details.
 - 2. Detail fabrication and installation layouts, expansion-joint locations, and keyed details. Distinguish between shop- and field-assembled work.
 - 3. Include identification of material, thickness, weight, and finish for each item and location in Project.
 - 4. Include details for forming, including profiles, shapes, seams, and dimensions.
 - 5. Include details for joining, supporting, and securing, including layout and spacing of fasteners, cleats, clips, and other attachments. Include pattern of seams.
 - 6. Include details of termination points and assemblies.
 - 7. Include details of expansion joints and expansion-joint covers, including showing direction of expansion and contraction from fixed points.
 - 8. Include details of roof-penetration flashing.
 - 9. Include details of edge conditions, including eaves, ridges, valleys, rakes, crickets, and counterflashings as applicable.
 - 10. Include details of special conditions.
 - 11. Include details of connections to adjoining work.
 - 12. Detail formed flashing and trim at scale of not less than 3 inches per 12 inches.
- C. Samples for Verification: For each type of exposed finish.
 - 1. Sheet Metal Flashing: 12 inches (300 mm) long by actual width of unit, including finished seam and in required profile. Include fasteners, cleats, clips, closures, and other attachments.
 - 2. Trim, Metal Closures, Expansion Joints, Joint Intersections, and Miscellaneous Fabrications: 12 inches (300 mm) long and in required profile. Include fasteners and other exposed accessories.

1.6 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For fabricator.
- B. Product Test Reports: For each product, for tests performed by a qualified testing agency.
- C. Sample Warranty: For special warranty.

1.7 CLOSEOUT SUBMITTALS

A. Maintenance Data: For sheet metal flashing and trim, and its accessories, to include in maintenance manuals.

1.8 QUALITY ASSURANCE

A. Fabricator Qualifications: Employs skilled workers who custom fabricate sheet metal flashing and trim similar to that required for this Project and whose products have a record of successful in-service performance.

1.9 DELIVERY, STORAGE, AND HANDLING

- A. Do not store sheet metal flashing and trim materials in contact with other materials that might cause staining, denting, or other surface damage. Store sheet metal flashing and trim materials away from uncured concrete and masonry.
- B. Protect strippable protective covering on sheet metal flashing and trim from exposure to sunlight and high humidity, except to extent necessary for period of sheet metal flashing and trim installation.

1.10 WARRANTY

- A. Special Warranty on Finishes: Manufacturer agrees to repair finish or replace sheet metal flashing and trim that shows evidence of deterioration of factory-applied finishes within specified warranty period.
 - 1. Exposed Panel Finish: Deterioration includes, but is not limited to, the following:
 - a. Color fading more than 5 Hunter units when tested according to ASTM D 2244.
 - b. Chalking in excess of a No. 8 rating when tested according to ASTM D 4214.
 - c. Cracking, checking, peeling, or failure of paint to adhere to bare metal.
 - 2. Finish Warranty Period: 20 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. General: Sheet metal flashing and trim assemblies shall withstand wind loads, structural movement, thermally induced movement, and exposure to weather without failure due to defective manufacture, fabrication, installation, or other defects in construction. Completed sheet metal flashing and trim shall not rattle, leak, or loosen, and shall remain watertight.
- B. Sheet Metal Standard for Flashing and Trim: Comply with SMACNA's "Architectural Sheet Metal Manual" requirements for dimensions and profiles shown unless more stringent requirements are indicated.
- C. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes to prevent buckling, opening of joints, overstressing of components, failure of joint sealants, failure of connections, and other detrimental effects. Base calculations on surface temperatures of materials due to both solar heat gain and nighttime-sky heat loss.

- 1. Temperature Change: 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.
- D. SPRI Wind Design Standard: Manufacture and install copings and roof edge flashings tested according to SPRI ES-1 and capable of resisting the following design pressure:
 - 1. Design Pressure: As indicated on Drawings

2.2 SHEET METALS

- A. General: Protect mechanical and other finishes on exposed surfaces from damage by applying strippable, temporary protective film before shipping.
- B. Stainless-Steel Sheet: ASTM A 240/A 240M, dead soft, fully annealed; with smooth, flat surface.
 - 1. Finish: Zinc-tin alloy stainless steel.
- C. Metallic-Coated Steel Sheet: Provide zinc-coated (galvanized) steel sheet according to ASTM A 653/A 653M, G90 (Z275) coating designation or aluminum-zinc alloy-coated steel sheet according to ASTM A 792/A 792M, Class AZ50 (Class AZM150) coating designation, Grade 40 (Grade 275); prepainted by coil-coating process to comply with ASTM A 755/A 755M.
 - 1. Surface: Smooth, flat.
 - 2. Exposed Coil-Coated Finish:
 - a. Two-Coat Fluoropolymer: AAMA 621. Fluoropolymer finish containing not less than 70 percent PVDF resin by weight in color coat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.
 - 3. Color: As selected by Architect from manufacturer's full range.
 - 4. Concealed Finish: Pretreat with manufacturer's standard white or light-colored acrylic or polyester backer finish, consisting of prime coat and wash coat with minimum total dry film thickness of 0.5 mil (0.013 mm).

2.3 UNDERLAYMENT MATERIALS

- A. Felt: ASTM D 226/D 226M, Type II (No. 30), asphalt-saturated organic felt; nonperforated.
- B. Flexible Flashing at Openings: 100 percent solids, low VOC, liquid-applied flashing for opening perimeters. Basis-of-Design Product: R-Guard Fast Flash by Prosoco. Use with manufacturer's companion joint sealant.
- C. Self-Adhering, High-Temperature Sheet Flashing: Minimum 30 mils (0.76 mm) thick, consisting of a slip-resistant polyethylene- or polypropylene-film top surface laminated to a layer of butyl adhesive, with release-paper backing; specifically designed to withstand high metal temperatures beneath metal roofing. Provide primer according to written recommendations of underlayment manufacturer.

- 1. Thermal Stability: ASTM D 1970; stable after testing at 240 deg F (116 deg C) or higher.
- 2. Low-Temperature Flexibility: ASTM D 1970; passes after testing at minus 20 deg F (29 deg C) or lower.
- 3. Basis-of-Design Product: Grace Ultra, self-adhering butyl underlayment; www.gcpat.com.
- D. Slip Sheet: Rosin-sized building paper, 3 lb/100 sq. ft. (0.16 kg/sq. m) minimum.

2.4 MISCELLANEOUS MATERIALS

- A. General: Provide materials and types of fasteners, protective coatings, sealants, and other miscellaneous items as required for complete sheet metal flashing and trim installation and as recommended by manufacturer of primary sheet metal or manufactured item unless otherwise indicated.
- B. Fasteners: Wood screws, annular threaded nails, self-tapping screws, self-locking rivets and bolts, and other suitable fasteners designed to withstand design loads and recommended by manufacturer of primary sheet metal or manufactured item.
 - 1. General: Blind fasteners or self-drilling screws, gasketed, with hex-washer head.
 - a. Exposed Fasteners: Heads matching color of sheet metal using plastic caps or factory-applied coating. Provide metal-backed EPDM or PVC sealing washers under heads of exposed fasteners bearing on weather side of metal.
 - b. Blind Fasteners: High-strength aluminum or stainless-steel rivets suitable for metal being fastened.
 - c. Spikes and Ferrules: Same material as gutter; with spike with ferrule matching internal gutter width.
 - 2. Fasteners for Zinc-Coated (Galvanized), Aluminum-Zinc Alloy-Coated Steel Sheet: Series 300 stainless steel or hot-dip galvanized steel according to ASTM A 153/A 153M or ASTM F 2329.
- C. Sealant Tape: Pressure-sensitive, 100 percent solids, polyisobutylene compound sealant tape with release-paper backing. Provide permanently elastic, nonsag, nontoxic, nonstaining tape 1/2 inch (13 mm) wide and 1/8 inch (3 mm) thick.
- D. Elastomeric Sealant: ASTM C 920, elastomeric silicone polymer sealant; of type, grade, class, and use classifications required to seal joints in sheet metal flashing and trim and remain watertight.
- E. Butyl Sealant: ASTM C 1311, single-component, solvent-release butyl rubber sealant; polyisobutylene plasticized; heavy bodied for hooked-type expansion joints with limited movement.
- F. Epoxy Seam Sealer: Two-part, noncorrosive, aluminum seam-cementing compound, recommended by aluminum manufacturer for exterior nonmoving joints, including riveted joints.
- G. Bituminous Coating: Cold-applied asphalt emulsion according to ASTM D 1187.
- H. Asphalt Roofing Cement: ASTM D 4586, asbestos free, of consistency required for application.

2.5 FABRICATION, GENERAL

- A. General: Custom fabricate sheet metal flashing and trim to comply with details shown and recommendations in cited sheet metal standard that apply to design, dimensions, geometry, metal thickness, and other characteristics of item required. Fabricate sheet metal flashing and trim in shop to greatest extent possible.
 - 1. Fabricate sheet metal flashing and trim in thickness or weight needed to comply with performance requirements, but not less than that specified for each application and metal.
 - 2. Obtain field measurements for accurate fit before shop fabrication.
 - 3. Form sheet metal flashing and trim to fit substrates without excessive oil canning, buckling, and tool marks; true to line, levels, and slopes; and with exposed edges folded back to form hems.
 - 4. Conceal fasteners and expansion provisions where possible. Do not use exposed fasteners on faces exposed to view.
- B. Fabrication Tolerances: Fabricate sheet metal flashing and trim that is capable of installation to a tolerance of 1/4 inch in 20 feet (6 mm in 6 m) on slope and location lines indicated on Drawings and within 1/8-inch (3-mm) offset of adjoining faces and of alignment of matching profiles.
- C. Expansion Provisions: Form metal for thermal expansion of exposed flashing and trim.
 - 1. Form expansion joints of intermeshing hooked flanges, not less than 1 inch (25 mm) deep, filled with butyl sealant concealed within joints.
 - 2. Use lapped expansion joints only where indicated on Drawings.
- D. Sealant Joints: Where movable, nonexpansion-type joints are required, form metal to provide for proper installation of elastomeric sealant according to cited sheet metal standard.
- E. Fabricate cleats and attachment devices from same material as accessory being anchored or from compatible, noncorrosive metal.
- F. Seams: Fabricate nonmoving seams with flat-lock seams. Form seams and seal with elastomeric sealant unless otherwise recommended by sealant manufacturer for intended use. Rivet joints where necessary for strength.
- G. Do not use graphite pencils to mark metal surfaces.

2.6 LOW-SLOPE ROOF SHEET METAL FABRICATIONS

- A. Roof Edge Flashing and Fascia Cap: Fabricate in minimum 96-inch long, but not exceeding 12foot- (3.6-m-) long sections. Furnish with 6-inch wide, joint cover plates. Shop fabricate interior and exterior corners.
 - 1. Joint Style: Standing seam with 45-degree slope at all faces of coping visible from below.
 - 2. Fabricate from the Following Materials:
 - a. Aluminum-Zinc Alloy-Coated Steel: 0.028 inch thick.
- B. Base Flashing: Fabricate from the following materials:

- 1. Aluminum-Zinc Alloy-Coated Steel: 0.028 inch thick.
- C. Counterflashing: Fabricate from the following materials:
 - 1. Aluminum-Zinc Alloy-Coated Steel: 0.022 inch thick.
- D. Flashing Receivers: Fabricate from the following materials:
 - 1. Aluminum-Zinc Alloy-Coated Steel: 0.022 inch thick.
- E. Roof-Penetration Flashing: Fabricate from the following materials:
 - 1. Aluminum-Zinc Alloy-Coated Steel: 0.028 inch thick.
- F. Roof-Drain Flashing: Fabricate from the following materials:
 - 1. Zinc-Tin Alloy-Coated Stainless Steel: 0.015 inch thick.

2.7 WALL SHEET METAL FABRICATIONS

- A. Opening Flashings in Frame Construction: Fabricate head, sill, jamb, and similar flashings to extend 4 inches beyond wall openings. Form head and sill flashing with 2-inch- (50-mm-) high, end dams. Fabricate from the following materials:
 - 1. Aluminum-Zinc Alloy-Coated Steel: 0.022 inch thick.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances, substrate, and other conditions affecting performance of the Work.
 - 1. Verify compliance with requirements for installation tolerances of substrates.
 - 2. Verify that substrate is sound, dry, smooth, clean, sloped for drainage, and securely anchored.
 - 3. Verify that air- or water-resistant barriers have been installed over sheathing or backing substrate to prevent air infiltration or water penetration.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 UNDERLAYMENT INSTALLATION

A. Self-Adhering Sheet Underlayment: Install self-adhering sheet underlayment, wrinkle free. Prime substrate if recommended by underlayment manufacturer. Comply with temperature restrictions of underlayment manufacturer for installation; use primer for installing underlayment at low temperatures. Apply in shingle fashion to shed water, with end laps of not less than 6 inches (150

mm) staggered 24 inches (600 mm) between courses. Overlap side edges not less than 3-1/2 inches (90 mm). Roll laps and edges with roller. Cover underlayment within 14 days.

3.3 INSTALLATION, GENERAL

- A. General: Anchor sheet metal flashing and trim and other components of the Work securely in place, with provisions for thermal and structural movement. Use fasteners, protective coatings, separators, sealants, and other miscellaneous items as required to complete sheet metal flashing and trim system.
 - 1. Install sheet metal flashing and trim true to line, levels, and slopes. Provide uniform, neat seams with minimum exposure of solder, welds, and sealant.
 - 2. Install sheet metal flashing and trim to fit substrates and to result in watertight performance. Verify shapes and dimensions of surfaces to be covered before fabricating sheet metal.
 - 3. Space cleats not more than 12 inches (300 mm) apart. Attach each cleat with at least two fasteners. Bend tabs over fasteners.
 - 4. Install exposed sheet metal flashing and trim with limited oil canning, and free of buckling and tool marks.
 - 5. Torch cutting of sheet metal flashing and trim is not permitted.
 - 6. Do not use graphite pencils to mark metal surfaces.
- B. Metal Protection: Where dissimilar metals contact each other, or where metal contacts pressuretreated wood or other corrosive substrates, protect against galvanic action or corrosion by painting contact surfaces with bituminous coating or by other permanent separation as recommended by sheet metal manufacturer or cited sheet metal standard.
 - 1. Coat concealed side of stainless-steel sheet metal flashing and trim with bituminous coating where flashing and trim contact wood, ferrous metal, or cementitious construction.
 - 2. Underlayment: Where installing sheet metal flashing and trim directly on cementitious or wood substrates, install underlayment and cover with slip sheet.
- C. Expansion Provisions: Provide for thermal expansion of exposed flashing and trim. Space movement joints at maximum of 10 feet with no joints within 24 inches (600 mm) of corner or intersection.
 - 1. Form expansion joints of intermeshing hooked flanges, not less than 1 inch (25 mm) deep, filled with sealant concealed within joints.
 - 2. Use lapped expansion joints only where indicated on Drawings.
- D. Fasteners: Use fastener sizes that penetrate substrate not less than recommended by fastener manufacturer to achieve maximum pull-out resistance.
- E. Conceal fasteners and expansion provisions where possible in exposed work and locate to minimize possibility of leakage. Cover and seal fasteners and anchors as required for a tight installation.
- F. Seal joints as required for watertight construction.
 - 1. Use sealant-filled joints unless otherwise indicated. Embed hooked flanges of joint members not less than 1 inch (25 mm) into sealant. Form joints to completely conceal

sealant. When ambient temperature at time of installation is between 40 and 70 deg F (4 and 21 deg C), set joint members for 50 percent movement each way. Adjust setting proportionately for installation at higher ambient temperatures. Do not install sealant-type joints at temperatures below 40 deg F (4 deg C).

- 2. Prepare joints and apply sealants to comply with requirements in Section 079200 "Joint Sealants."
- G. Soldered Joints: Clean surfaces to be soldered, removing oils and foreign matter. Pre-tin edges of sheets with solder to width of 1-1/2 inches (38 mm); however, reduce pre-tinning where pre-tinned surface would show in completed Work.
 - 1. Stainless-Steel Soldering: Tin edges of uncoated sheets, using solder for stainless steel and acid flux. Promptly remove acid flux residue from metal after tinning and soldering. Comply with solder manufacturer's recommended methods for cleaning and neutralization.

3.4 ROOF FLASHING INSTALLATION

- A. General: Install sheet metal flashing and trim to comply with performance requirements, sheet metal manufacturer's written installation instructions, and cited sheet metal standard. Provide concealed fasteners where possible, and set units true to line, levels, and slopes. Install work with laps, joints, and seams that are permanently watertight and weather resistant.
- B. Roof Edge Flashing: Anchor to resist uplift and outward forces according to recommendations in cited sheet metal standard unless otherwise indicated. Interlock bottom edge of roof edge flashing with continuous cleat anchored to substrate at staggered 3-inch centers.
- C. Pipe or Post Counterflashing: Install counterflashing umbrella with close-fitting collar with top edge flared for elastomeric sealant, extending minimum of 4 inches (100 mm) over base flashing. Install stainless-steel draw band and tighten.
- D. Counterflashing: Coordinate installation of counterflashing with installation of base flashing. Insert counterflashing in reglets or receivers and fit tightly to base flashing. Extend counterflashing 4 inches (100 mm) over base flashing. Lap counterflashing joints minimum of 4 inches (100 mm). Secure in waterproof manner by means of snap-in installation and sealant or lead wedges and sealant unless otherwise indicated.
- E. Roof-Penetration Flashing: Coordinate installation of roof-penetration flashing with installation of roofing and other items penetrating roof. Seal with elastomeric sealant and clamp flashing to pipes that penetrate roof.

3.5 WALL FLASHING INSTALLATION

- A. General: Install sheet metal wall flashing to intercept and exclude penetrating moisture according to cited sheet metal standard unless otherwise indicated. Coordinate installation of wall flashing with installation of wall-opening components such as windows, doors, and louvers.
- B. Opening Flashings in Frame Construction: Install continuous head, sill, jamb, and similar flashings to extend 4 inches beyond wall openings.

3.6 MISCELLANEOUS FLASHING INSTALLATION

A. Equipment Support Flashing: Coordinate installation of equipment support flashing with installation of roofing and equipment. Weld or seal flashing with elastomeric sealant to equipment support member.

3.7 ERECTION TOLERANCES

- A. Installation Tolerances: Shim and align sheet metal flashing and trim within installed tolerance of 1/4 inch in 20 feet (6 mm in 6 m) on slope and location lines indicated on Drawings and within 1/8-inch (3-mm) offset of adjoining faces and of alignment of matching profiles.
- B. Installation Tolerances: Shim and align sheet metal flashing and trim within installed tolerances specified in MCA's "Guide Specification for Residential Metal Roofing."

3.8 CLEANING AND PROTECTION

- A. Clean exposed metal surfaces of substances that interfere with uniform oxidation and weathering.
- B. Clean and neutralize flux materials. Clean off excess solder.
- C. Clean off excess sealants.
- D. Remove temporary protective coverings and strippable films as sheet metal flashing and trim are installed unless otherwise indicated in manufacturer's written installation instructions. On completion of sheet metal flashing and trim installation, remove unused materials and clean finished surfaces as recommended by sheet metal flashing and trim manufacturer. Maintain sheet metal flashing and trim in clean condition during construction.
- E. Replace sheet metal flashing and trim that have been damaged or that have deteriorated beyond successful repair by finish touchup or similar minor repair procedures.

END OF SECTION 076200

SECTION 079200 - JOINT SEALANTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Silicone joint sealants.
 - 2. Nonstaining silicone joint sealants.
 - 3. Urethane joint sealants.
 - 4. Mildew-resistant joint sealants.
 - 5. Butyl joint sealants.
 - 6. Latex joint sealants.
 - 7. Low expanding foam sealant.
- B. Related Requirements:
 - 1. Section 09 29 00 "Gypsum Board" for acoustical sealant.

1.3 ACTION SUBMITTALS

- A. Product Data: For each joint-sealant product.
- B. Samples for Initial Selection: Manufacturer's color charts consisting of strips of cured sealants showing the full range of colors available for each product exposed to view.
- C. Samples for Verification: For each kind and color of joint sealant required, provide Samples with joint sealants in 1/2-inch-13-mm- wide joints formed between two 6-inch-150-mm- long strips of material matching the appearance of exposed surfaces adjacent to joint sealants.
- D. Joint-Sealant Schedule: Include the following information:
 - 1. Joint-sealant application, joint location, and designation.
 - 2. Joint-sealant manufacturer and product name.
 - 3. Joint-sealant formulation.
 - 4. Joint-sealant color.

1.4 INFORMATIONAL SUBMITTALS

A. Qualification Data: For qualified testing agency.

JOINT SEALANTS

- B. Product Test Reports: For each kind of joint sealant, for tests performed by a qualified testing agency.
- C. Field-Adhesion-Test Reports: For each sealant application tested.
- D. Sample Warranties: For special warranties.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: An authorized representative who is trained and approved by manufacturer.
- B. Product Testing: Test joint sealants using a qualified testing agency.
 - 1. Testing Agency Qualifications: Qualified according to ASTM C 1021 to conduct the testing indicated.
- C. Pre-installation Conference: Conduct conference at Project site.
- D. Mockups: Install sealant in mockups of assemblies specified in other Sections that are indicated to receive joint sealants specified in this Section. Use materials and installation methods specified in this Section.

1.6 FIELD CONDITIONS

- A. Do not proceed with installation of joint sealants under the following conditions:
 - 1. When ambient and substrate temperature conditions are outside limits permitted by jointsealant manufacturer or are below 40 deg F (5 deg C).
 - 2. When joint substrates are wet.
 - 3. Where joint widths are less than those allowed by joint-sealant manufacturer for applications indicated.
 - 4. Where contaminants capable of interfering with adhesion have not yet been removed from joint substrates.

1.7 WARRANTY

- A. Special Installer's Warranty: Installer agrees to repair or replace joint sealants that do not comply with performance and other requirements specified in this Section within specified warranty period.
 - 1. Warranty Period: Two years from date of Substantial Completion.
- B. Special Manufacturer's Warranty: Manufacturer agrees to furnish joint sealants to repair or replace those joint sealants that do not comply with performance and other requirements specified in this Section within specified warranty period.
 - 1. Warranty Period: Five years from date of Substantial Completion.

- C. Special warranties specified in this article exclude deterioration or failure of joint sealants from the following:
 - 1. Movement of the structure caused by stresses on the sealant exceeding sealant manufacturer's written specifications for sealant elongation and compression.
 - 2. Disintegration of joint substrates from causes exceeding design specifications.
 - 3. Mechanical damage caused by individuals, tools, or other outside agents.
 - 4. Changes in sealant appearance caused by accumulation of dirt or other atmospheric contaminants.

PART 2 - PRODUCTS

2.1 JOINT SEALANTS, GENERAL

- A. Compatibility: Provide joint sealants, backings, and other related materials that are compatible with one another and with joint substrates under conditions of service and application, as demonstrated by joint-sealant manufacturer, based on testing and field experience.
- B. Colors of Exposed Joint Sealants: As selected by Architect from manufacturer's full range.

2.2 SILICONE JOINT SEALANTS

- A. Silicone, S, NS, 100/50, NT: Single-component, non-sag, plus 100 percent and minus 50 percent movement capability, non-traffic-use, neutral-curing silicone joint sealant; ASTM C 920, Type S, Grade NS, Class 100/50, Use NT.
 - 1. Basis-of-Design Product: 790 Silicone by Dow Corning; www.dowcorning.com
 - 2. Applications:
 - a. Non-porous dissimilar materials.
 - b. Joints: 3/8 inch wide or less.
 - 3. Location: Exterior non-paintable surfaces.
- B. Silicone, S, NS, 50, NT: Single-component, nonsag, plus 50 percent and minus 50 percent movement capability, nontraffic-use, neutral-curing silicone joint sealant; ASTM C 920, Type S, Grade NS, Class 50, Use NT.
 - 1. Basis-of-Design Product: 795 Silicone by Dow Corning; www.dowcorning.com
 - 2. Applications:
 - a. Similar materials.
 - b. Joints: 3/8 inch wide or more.

2.3 NONSTAINING SILICONE JOINT SEALANTS

A. Nonstaining Joint Sealants: No staining of substrates when tested according to ASTM C1248.

- B. Silicone, Nonstaining, S, NS, 100/50, NT: Nonstaining, single-component, nonsag, plus 100 percent and minus 50 percent movement capability, nontraffic-use, neutral-curing silicone joint sealant; ASTM C920, Type S, Grade NS, Class 100/50, Use NT.
 - 1. Application: Porous exterior substrates.
- C. Silicone, Nonstaining, S, NS, 25, NT: Single-component, nonsag, plus 25 percent and minus 25 percent movement capability, nontraffic-use, neutral-curing silicone joint sealant; ASTM C920, Type S, Grade NS, Class 25, Use NT.
 - 1. Basis-of-Design Product: 758 Silicone Weather Barrier Sealant by Dow Corning; www.dowcorning.com.
 - 2. Application: Sealing weather barrier materials and adjacent surfaces where low movement is anticipated.

2.4 URETHANE JOINT SEALANTS

- A. Urethane, S, NS, 100/50, T, NT: Single-component, non-sag, plus 100 percent and minus 50 percent movement capability, traffic- and non-traffic-use, urethane joint sealant; ASTM C 920, Type S, Grade NS, Class 100/50, Uses NT, M, A, O and I (Class 2).
 - 1. Manufacturers: Subject to compliance with requirements, provide Vulkem 921 or comparable products from, but not limited to, the following:
 - a. BASF Building Systems.
 - b. Bostik, Inc.
 - c. Sika Corporation.
 - 2. Location: Exterior paintable surfaces and exterior and interior horizontal concrete joints.

2.5 MILDEW-RESISTANT JOINT SEALANTS

- A. Mildew-Resistant Joint Sealants: Formulated for prolonged exposure to humidity with fungicide to prevent mold and mildew growth.
- B. Silicone, Mildew Resistant, Acid Curing, S, NS, 25, NT: Mildew-resistant, single-component, non-sag, plus 25 percent and minus 25 percent movement capability, non-traffic-use, acid-curing silicone joint sealant; ASTM C 920, Type S, Grade NS, Class 25, Use NT.
 - 1. Location: At joints in ceramic tile walls and floor, around equipment and around plumbing fixtures.

2.6 LATEX JOINT SEALANTS

- A. Acrylic Latex: Acrylic latex or siliconized acrylic latex, ASTM C 834, Type OP, Grade NF.
- B. Location: At interior frames/walls.

2.7 LOW EXPANDING FOAM SEALANTS

- A. Low expanding, one-component, polyurethane foam sealant, curing to a semi-rigid, closed cell urethane foam.
- B. Acceptable products:
 - 1. Hilti CF812 WD (Low Pressure polyurethane).
 - 2. Dow GREAT STUFF.
- C. Locations:
 - 1. Apply between top of precast concrete panels and metal framing.
 - 2. Miscellaneous openings and voids in exterior walls.

2.8 SECURITY SEALANT

- A. Flexible polyurethane security sealant. Apply as base installation and in all open wall panel joints in Seclusion Room.
- B. Acceptable products: Dynaflex by Pecora Corp or accepted substitute.

2.9 JOINT-SEALANT BACKING

- A. Sealant Backing Material, General: Non-staining; compatible with joint substrates, sealants, primers, and other joint fillers; and approved for applications indicated by sealant manufacturer based on field experience and laboratory testing.
- B. Cylindrical Sealant Backings: ASTM C 1330, Type O (open-cell material), Type B (bi-cellular material with a surface skin) or any of the preceding types, as approved in writing by joint-sealant manufacturer for joint application indicated, and of size and density to control sealant depth and otherwise contribute to producing optimum sealant performance.
- C. Bond-Breaker Tape: Polyethylene tape or other plastic tape recommended by sealant manufacturer for preventing sealant from adhering to rigid, inflexible joint-filler materials or joint surfaces at back of joint. Provide self-adhesive tape where applicable.

2.10 MISCELLANEOUS MATERIALS

- A. Primer: Material recommended by joint-sealant manufacturer where required for adhesion of sealant to joint substrates indicated, as determined from preconstruction joint-sealant-substrate tests and field tests.
- B. Cleaners for Nonporous Surfaces: Chemical cleaners acceptable to manufacturers of sealants and sealant backing materials, free of oily residues or other substances capable of staining or harming joint substrates and adjacent nonporous surfaces in any way, and formulated to promote optimum adhesion of sealants to joint substrates.

C. Masking Tape: Non-staining, nonabsorbent material compatible with joint sealants and surfaces adjacent to joints.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine joints indicated to receive joint sealants, with Installer present, for compliance with requirements for joint configuration, installation tolerances, and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Cleaning of Joints: Clean out joints immediately before installing joint sealants to comply with joint-sealant manufacturer's written instructions and the following requirements:
 - 1. Remove all foreign material from joint substrates that could interfere with adhesion of joint sealant, including dust, paints (except for permanent, protective coatings tested and approved for sealant adhesion and compatibility by sealant manufacturer), old joint sealants, oil, grease, waterproofing, water repellents, water, surface dirt, and frost.
 - 2. Clean porous joint substrate surfaces by brushing, grinding, mechanical abrading, or a combination of these methods to produce a clean, sound substrate capable of developing optimum bond with joint sealants. Remove loose particles remaining after cleaning operations above by vacuuming or blowing out joints with oil-free compressed air. Porous joint substrates include the following:
 - a. Concrete.
 - b. Masonry.
 - c. Unglazed surfaces of ceramic tile.
 - d. Exterior insulation and finish systems.
 - 3. Remove laitance and form-release agents from concrete.
 - 4. Clean nonporous joint substrate surfaces with chemical cleaners or other means that do not stain, harm substrates, or leave residues capable of interfering with adhesion of joint sealants. Nonporous joint substrates include the following:
 - a. Metal.
 - b. Glass.
 - c. Porcelain enamel.
 - d. Glazed surfaces of ceramic tile.
- B. Joint Priming: Prime joint substrates where recommended by joint-sealant manufacturer or as indicated by preconstruction joint-sealant-substrate tests or prior experience. Apply primer to comply with joint-sealant manufacturer's written instructions. Confine primers to areas of joint-sealant bond; do not allow spillage or migration onto adjoining surfaces.

C. Masking Tape: Use masking tape where required to prevent contact of sealant or primer with adjoining surfaces that otherwise would be permanently stained or damaged by such contact or by cleaning methods required to remove sealant smears. Remove tape immediately after tooling without disturbing joint seal.

3.3 INSTALLATION OF JOINT SEALANTS

- A. General: Comply with joint-sealant manufacturer's written installation instructions for products and applications indicated, unless more stringent requirements apply.
- B. Sealant Installation Standard: Comply with recommendations in ASTM C 1193 for use of joint sealants as applicable to materials, applications, and conditions indicated.
- C. Install sealant backings of kind indicated to support sealants during application and at position required to produce cross-sectional shapes and depths of installed sealants relative to joint widths that allow optimum sealant movement capability.
 - 1. Do not leave gaps between ends of sealant backings.
 - 2. Do not stretch, twist, puncture, or tear sealant backings.
 - 3. Remove absorbent sealant backings that have become wet before sealant application, and replace them with dry materials
- D. Install bond-breaker tape behind sealants where sealant backings are not used between sealants and backs of joints.
- E. Install sealants using proven techniques that comply with the following and at the same time backings are installed:
 - 1. Place sealants so they directly contact and fully wet joint substrates.
 - 2. Completely fill recesses in each joint configuration.
 - 3. Produce uniform, cross-sectional shapes and depths relative to joint widths that allow optimum sealant movement capability.
- F. Tooling of Non-sag Sealants: Immediately after sealant application and before skinning or curing begins, tool sealants according to requirements specified in subparagraphs below to form smooth, uniform beads of configuration indicated; to eliminate air pockets; and to ensure contact and adhesion of sealant with sides of joint.
 - 1. Remove excess sealant from surfaces adjacent to joints.
 - 2. Use tooling agents that are approved in writing by sealant manufacturer and that do not discolor sealants or adjacent surfaces.
 - 3. Provide concave joint profile per Figure 8A in ASTM C 1193 unless otherwise indicated.

3.4 FIELD QUALITY CONTROL

- A. Field-Adhesion Testing: Field test joint-sealant adhesion to joint substrates as follows:
 - 1. Extent of Testing: Test completed and cured sealant joints as follows:

- a. Perform 10 tests for the first 1000 feet (300 m) of joint length for each kind of sealant and joint substrate.
- b. Perform one test for each 1000 feet (300 m) of joint length thereafter or one test per each floor per elevation.
- 2. Test Method: Test joint sealants according to Method A, Field-Applied Sealant Joint Hand Pull Tab, in Appendix X1 in ASTM C 1193 or Method A, Tail Procedure, in ASTM C 1521.
 - a. For joints with dissimilar substrates, verify adhesion to each substrate separately; extend cut along one side, verifying adhesion to opposite side. Repeat procedure for opposite side.
- 3. Inspect tested joints and report on the following:
 - a. Whether sealants filled joint cavities and are free of voids.
 - b. Whether sealant dimensions and configurations comply with specified requirements.
 - c. Whether sealants in joints connected to pulled-out portion failed to adhere to joint substrates or tore cohesively. Include data on pull distance used to test each kind of product and joint substrate. Compare these results to determine if adhesion complies with sealant manufacturer's field-adhesion hand-pull test criteria.
- 4. Record test results in a field-adhesion-test log. Include dates when sealants were installed, names of persons who installed sealants, test dates, test locations, whether joints were primed, adhesion results and percent elongations, sealant material, sealant configuration, and sealant dimensions.
- 5. Repair sealants pulled from test area by applying new sealants following same procedures used originally to seal joints. Ensure that original sealant surfaces are clean and that new sealant contacts original sealant.
- B. Evaluation of Field-Adhesion-Test Results: Sealants not evidencing adhesive failure from testing or noncompliance with other indicated requirements will be considered satisfactory. Remove sealants that fail to adhere to joint substrates during testing or to comply with other requirements. Retest failed applications until test results prove sealants comply with indicated requirements.

3.5 CLEANING

A. Clean off excess sealant or sealant smears adjacent to joints as the Work progresses by methods and with cleaning materials approved in writing by manufacturers of joint sealants and of products in which joints occur.

3.6 **PROTECTION**

A. Protect joint sealants during and after curing period from contact with contaminating substances and from damage resulting from construction operations or other causes so sealants are without deterioration or damage at time of Substantial Completion. If, despite such protection, damage or deterioration occurs, cut out, remove, and repair damaged or deteriorated joint sealants immediately so installations with repaired areas are indistinguishable from original work.

END OF SECTION 079200

SECTION 081113 - HOLLOW METAL DOORS AND FRAMES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes hollow-metal work including:
 - 1. Non-fire-rated doors and frames.
- B. Related Requirements:
 - 1. Section 087100 "Door Hardware" for door hardware for hollow-metal doors and frames.

1.3 DEFINITIONS

A. Minimum Thickness: Minimum thickness of base metal without coatings according to NAAMM-HMMA 803 or SDI A250.8.

1.4 COORDINATION

A. Coordinate anchorage installation for hollow-metal frames. Furnish setting drawings, templates, and directions for installing anchorages, including sleeves, concrete inserts, anchor bolts, and items with integral anchors. Deliver such items to Project site in time for installation.

1.5 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.6 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, core descriptions, fire-resistance ratings, temperature-rise ratings, and finishes.
- B. Shop Drawings: Include the following:
 - 1. Elevations of each door type.

- 2. Details of doors, including vertical- and horizontal-edge details and metal thicknesses.
- 3. Frame details for each frame type, including dimensioned profiles and metal thicknesses.
- 4. Locations of reinforcement and preparations for hardware.
- 5. Details of each different wall opening condition.
- 6. Details of anchorages, joints, field splices, and connections.
- 7. Details of accessories.
- 8. Details of moldings, removable stops, and glazing.
- 9. Details of conduit and preparations for power, signal, and control systems.
- C. Samples for Verification:
 - 1. For each type of exposed finish required, prepared on Samples of not less than 3 by 5 inches (75 by 127 mm).
 - 2. For "Doors" and "Frames" subparagraphs below, prepare Samples approximately 12 by 12 inches (305 by 305 mm) to demonstrate compliance with requirements for quality of materials and construction:
 - a. Doors: Show vertical-edge, top, and bottom construction; core construction; and hinge and other applied hardware reinforcement. Include separate section showing glazing if applicable.
 - b. Frames: Show profile, corner joint, floor and wall anchors, and silencers. Include separate section showing fixed hollow-metal panels and glazing if applicable.
- D. Schedule: Provide a schedule of hollow-metal work prepared by or under the supervision of supplier, using same reference numbers for details and openings as those on Drawings. Coordinate with final Door Hardware Schedule.

1.7 INFORMATIONAL SUBMITTALS

- A. Product Test Reports: For each type of hollow-metal door and frame assembly, for tests performed by a qualified testing agency.
 - 1. Provide compliance with the air infiltration test procedure for exterior swing doors per AAMA/WDMA/CSA101/I.S.2/A440, NFRC 400, or ASTM E 283 at 1.57 psf (75Pa)..
- B. Oversize Construction Certification: For assemblies required to be fire rated and exceeding limitations of labeled assemblies.

1.8 DELIVERY, STORAGE, AND HANDLING

- A. Deliver hollow-metal work palletized, packaged, or crated to provide protection during transit and Project-site storage. Do not use nonvented plastic.
 - 1. Provide additional protection to prevent damage to factory-finished units.
- B. Deliver welded frames with two removable spreader bars across bottom of frames, tack welded to jambs and mullions.

C. Store hollow-metal work vertically under cover at Project site with head up. Place on minimum 4-inch- (102-mm-) high wood blocking. Provide minimum 1/4-inch (6-mm) space between each stacked door to permit air circulation.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Hollow Metal Door and Frame Product and Manufacturer:
 - 1. Provide Curries 747 T metal doors with metal frames designed for Curries 747 T doors. No substitutions allowed.

2.2 PERFORMANCE REQUIREMENTS

- A. Fire-Rated Assemblies: Complying with NFPA 80 and listed and labeled by a qualified testing agency acceptable to authorities having jurisdiction for fire-protection ratings indicated, based on testing at positive pressure according to NFPA 252 or UL 10C.
- B. Thermally Rated Door Assemblies: Provide door assemblies with U-factor of not more than 0.70 deg Btu/F x h x sq. ft. when tested according to ASTM C 518.
- C. Air Infiltration: Provide compliance with the air infiltration test procedure for exterior swing doors per AAMA/WDMA/CSA101/I.S.2/A440, NFRC 400, or ASTM E 283 at 1.57 psf (75Pa).
 - 1. Maximum Air Infiltration:
 - a. Exterior swing doors: 0.30 cfm per square foot of door area.

2.3 EXTERIOR HOLLOW-METAL DOORS AND FRAMES

- A. Construct exterior doors and frames to comply with the standards indicated for materials, fabrication, hardware locations, hardware reinforcement, tolerances, and clearances, and as specified.
- B. Maximum Duty Doors and Frames: SDI A250.8, Level 4.
 - 1. Physical Performance: Level A (1,000,000 cycles) according to SDI A250.4.
 - 2. Doors:
 - a. Type: As indicated in the Door and Frame Schedule.
 - b. Thickness: 1-3/4 inches (44.5 mm.)
 - c. Face: Metallic-coated steel sheet, minimum thickness of 14 gauge, 0.067-inch (1.7-mm), with minimum A40 (ZF120) coating.
 - d. Edge Construction: Model 2, Seamless.
 - e. Core: Manufacturer's standard.
 - 3. Frames:

- a. Materials: Metallic-coated steel sheet, minimum thickness of 14 gauge, 0.067-inch (1.7-mm), with minimum A40 (ZF120) coating.
- b. Construction: Full profile welded.
- c. Provide with stucco flange at exterior side.
- d. Fully grout exterior frames.
- 4. Exposed Finish: Prime Factory.

2.4 FRAME ANCHORS

- A. Jamb Anchors:
 - 1. Masonry Type: Adjustable strap-and-stirrup or T-shaped anchors to suit frame size, not less than 0.042 inch (1.0 mm) thick, with corrugated or perforated straps not less than 2 inches (51 mm) wide by 10 inches (254 mm) long; or wire anchors not less than 0.177 inch (4.5 mm) thick.
 - 2. Stud-Wall Type: Designed to engage stud, welded to back of frames; not less than 0.042 inch (1.0 mm) thick.
 - 3. Compression Type for Drywall Slip-on Frames: Adjustable compression anchors.
 - 4. Post installed Expansion Type for In-Place Concrete or Masonry: Minimum 3/8-inch- (9.5mm-) diameter bolts with expansion shields or inserts. Provide pipe spacer from frame to wall, with throat reinforcement plate, welded to frame at each anchor location.
- B. Floor Anchors: Formed from same material as frames, minimum thickness of 0.042 inch (1.0 mm), and as follows:
 - 1. Monolithic Concrete Slabs: Clip-type anchors, with two holes to receive fasteners.
 - 2. Separate Topping Concrete Slabs: Adjustable-type anchors with extension clips, allowing not less than 2-inch (51-mm) height adjustment. Terminate bottom of frames at finish floor surface.

2.5 MATERIALS

- A. Cold-Rolled Steel Sheet: ASTM A 1008/A 1008M, Commercial Steel (CS), Type B; suitable for exposed applications.
- B. Hot-Rolled Steel Sheet: ASTM A 1011/A 1011M, Commercial Steel (CS), Type B; free of scale, pitting, or surface defects; pickled and oiled.
- C. Metallic-Coated Steel Sheet: ASTM A 653/A 653M, Commercial Steel (CS), Type B.
- D. Frame Anchors: ASTM A 879/A 879M, Commercial Steel (CS), 04Z (12G) coating designation; mill phosphatized.
 - 1. For anchors built into exterior walls, steel sheet complying with ASTM A 1008/A 1008M or ASTM A 1011/A 1011M, hot-dip galvanized according to ASTM A 153/A 153M, Class B.
- E. Inserts, Bolts, and Fasteners: Hot-dip galvanized according to ASTM A 153/A 153M.

- F. Power-Actuated Fasteners in Concrete: Fastener system of type suitable for application indicated, fabricated from corrosion-resistant materials, with clips or other accessory devices for attaching hollow-metal frames of type indicated.
- G. Grout: ASTM C 476, except with a maximum slump of 4 inches (102 mm), as measured according to ASTM C 143/C 143M.
- H. Mineral-Fiber Insulation: ASTM C 665, Type I (blankets without membrane facing); consisting of fibers manufactured from slag or rock wool; with maximum flame-spread and smoke-developed indexes of 25 and 50, respectively; passing ASTM E 136 for combustion characteristics.
- I. Glazing: Comply with requirements in Section 088000 "Glazing."
- J. Bituminous Coating: Cold-applied asphalt mastic, compounded for 15-mil (0.4-mm) dry film thickness per coat. Provide inert-type noncorrosive compound free of asbestos fibers, sulfur components, and other deleterious impurities.

2.6 FABRICATION

- A. Fabricate hollow-metal work to be rigid and free of defects, warp, or buckle. Accurately form metal to required sizes and profiles, with minimum radius for metal thickness. Where practical, fit and assemble units in manufacturer's plant. To ensure proper assembly at Project site, clearly identify work that cannot be permanently factory assembled before shipment.
- B. Hollow-Metal Doors:
 - 1. Steel-Stiffened Door Cores: Provide minimum thickness 0.026 inch (0.66 mm), steel vertical stiffeners of same material as face sheets extending full-door height, with vertical webs spaced not more than 6 inches (152 mm) apart. Spot weld to face sheets no more than 5 inches (127 mm) on center. Fill spaces between stiffeners with glass- or mineral-fiber insulation.
 - 2. Fire Door Cores: As required to provide fire-protection and temperature-rise ratings indicated.
 - 3. Vertical Edges for Single-Acting Doors: Provide beveled or square edges at manufacturer's discretion.
 - 4. Top Edge Closures: Close top edges of doors with inverted closures, except provide flush closures at exterior doors of same material as face sheets.
 - 5. Bottom Edge Closures: Close bottom edges of doors where required for attachment of weather stripping with end closures or channels of same material as face sheets.
 - 6. Exterior Doors: Provide weep-hole openings in bottoms of exterior doors to permit moisture to escape. Seal joints in top edges of doors against water penetration.
 - 7. Astragals: Provide overlapping astragal on one leaf of pairs of doors where required by NFPA 80 for fire-performance rating or where indicated. Extend minimum 3/4 inch (19 mm) beyond edge of door on which astragal is mounted or as required to comply with published listing of qualified testing agency.
- C. Hollow-Metal Frames: Where frames are fabricated in sections due to shipping or handling limitations, provide alignment plates or angles at each joint, fabricated of same thickness metal as frames.

- 1. Transom Bar Frames: Provide closed tubular members with no visible face seams or joints, fabricated from same material as door frame. Fasten members at crossings and to jambs by butt welding.
- 2. Provide countersunk, flat- or oval-head exposed screws and bolts for exposed fasteners unless otherwise indicated.
- 3. Grout Guards: Weld guards to frame at back of hardware mortises in frames to be grouted.
- 4. Floor Anchors: Weld anchors to bottoms of jambs with at least four spot welds per anchor; however, for slip-on drywall frames, provide anchor clips or countersunk holes at bottoms of jambs.
- 5. Jamb Anchors: Provide number and spacing of anchors as follows:
 - a. Masonry Type: Locate anchors not more than 16 inches (406 mm) from top and bottom of frame. Space anchors not more than 32 inches (813 mm) o.c., to match coursing, and as follows:
 - 1) Two anchors per jamb up to 60 inches (1524 mm) high.
 - 2) Three anchors per jamb from 60 to 90 inches (1524 to 2286 mm) high.
 - 3) Four anchors per jamb from 90 to 120 inches (2286 to 3048 mm) high.
 - 4) Four anchors per jamb plus one additional anchor per jamb for each 24 inches (610 mm) or fraction thereof above 120 inches (3048 mm) high.
 - b. Stud-Wall Type: Locate anchors not more than 18 inches (457 mm) from top and bottom of frame. Space anchors not more than 32 inches (813 mm) o.c. and as follows:
 - 1) Three anchors per jamb up to 60 inches (1524 mm) high.
 - 2) Four anchors per jamb from 60 to 90 inches (1524 to 2286 mm) high.
 - 3) Five anchors per jamb from 90 to 96 inches (2286 to 2438 mm) high.
 - 4) Five anchors per jamb plus one additional anchor per jamb for each 24 inches (610 mm) or fraction thereof above 96 inches (2438 mm) high.
 - c. Compression Type: Not less than two anchors in each frame.
 - d. Postinstalled Expansion Type: Locate anchors not more than 6 inches (152 mm) from top and bottom of frame. Space anchors not more than 26 inches (660 mm) o.c.
- 6. Head Anchors: Two anchors per head for frames more than 42 inches (1067 mm) wide and mounted in metal-stud partitions.
- 7. Door Silencers: Except on weather-stripped frames, drill stops to receive door silencers as follows. Keep holes clear during construction.
 - a. Single-Door Frames: Drill stop in strike jamb to receive three door silencers.
 - b. Double-Door Frames: Drill stop in head jamb to receive two door silencers.
- 8. Terminated Stops: Terminate stops 6 inches (152 mm) above finish floor with a 45 or 90degree angle cut, and close open end of stop with steel sheet closure. Cover opening in extension of frame with welded-steel filler plate, with welds ground smooth and flush with frame.
- D. Fabricate concealed stiffeners and edge channels from either cold- or hot-rolled steel sheet.

- E. Hardware Preparation: Factory prepare hollow-metal work to receive templated mortised hardware; include cutouts, reinforcement, mortising, drilling, and tapping according to SDI A250.6, the Door Hardware Schedule, and templates.
 - 1. Reinforce doors and frames to receive non-templated, mortised, and surface-mounted door hardware.
 - 2. Comply with applicable requirements in SDI A250.6 and BHMA A156.115 for preparation of hollow-metal work for hardware.

2.7 FABRICATION, STEEL ACOUSTICAL DOOR FRAMES

- A. Source Limitations: Obtain steel acoustical door frames, sound-control seals, hinges, thresholds, and other items essential for sound control, from single source from single manufacturer.
- B. Frames: Fabricate sound control door frames with corners mitered, reinforced, and continuously welded the full depth and width of frame. Fabricate according to NAAMM-HMMA 865.
 - 1. Weld frames according to NAAMM-HMMA 820.
 - 2. Interior Frames: Fabricate from cold-rolled steel sheet unless otherwise indicated, 0.075inch (1.90-mm) nominal thickness or thicker as required to provide STC rating indicated.
 - 3. Hardware Reinforcement: Fabricate according to NAAMM-HMMA 865 of same material as face sheets.
 - 4. Head Reinforcement: Metallic-coated steel channel or angle stiffener, 0.108-inch (2.74-mm) nominal thickness.
 - 5. Jamb Anchors:
 - a. Stud-Wall Type: Designed to engage stud, welded to back of frames; not less than 0.048-inch (1.21-mm) nominal-thickness uncoated steel unless otherwise indicated.
 - 6. Floor Anchors: Not less than 0.079-inch (2.01-mm) nominal-thickness metallic-coated steel, and as follows:
 - a. Monolithic Concrete Slabs: Clip-type anchors, with two holes to receive fasteners.

2.8 STEEL FINISHES

- A. Prime Finish: Clean, pretreat, and apply manufacturer's standard primer.
 - 1. Shop Primer: Manufacturer's standard, fast-curing, lead- and chromate-free primer complying with SDI A250.10; recommended by primer manufacturer for substrate; compatible with substrate and field-applied coatings despite prolonged exposure.
- B. Factory Finish: Clean, pretreat, and apply manufacturer's standard two-coat, baked-on finish consisting of prime coat.

2.9 ACCESSORIES

A. Mullions and Transom Bars: Join to adjacent members by welding or rigid mechanical anchors.

B. Grout Guards: Formed from same material as frames, not less than 0.016 inch (0.4 mm) thick.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for embedded and built-in anchors to verify actual locations before frame installation.
- C. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Remove welded-in shipping spreaders installed at factory. Restore exposed finish by grinding, filling, and dressing, as required to make repaired area smooth, flush, and invisible on exposed faces.
- B. Drill and tap doors and frames to receive non-templated, mortised, and surface-mounted door hardware.

3.3 INSTALLATION

- A. General: Install hollow-metal work plumb, rigid, properly aligned, and securely fastened in place. Comply with Drawings and manufacturer's written instructions.
- B. Hollow-Metal Frames: Install hollow-metal frames for doors, transoms, sidelites, borrowed lites, and other openings, of size and profile indicated. Comply with SDI A250.11 or NAAMM-HMMA 840 as required by standards specified.
 - 1. Set frames accurately in position; plumbed, aligned, and braced securely until permanent anchors are set. After wall construction is complete, remove temporary braces, leaving surfaces smooth and undamaged.
 - a. At fire-rated openings, install frames according to NFPA 80.
 - b. Where frames are fabricated in sections because of shipping or handling limitations, field splice at approved locations by welding face joint continuously; grind, fill, dress, and make splice smooth, flush, and invisible on exposed faces.
 - c. Install frames with removable stops located on secure side of opening.
 - d. Install door silencers in frames before grouting.
 - e. Remove temporary braces necessary for installation only after frames have been properly set and secured.

- f. Check plumb, square, and twist of frames as walls are constructed. Shim as necessary to comply with installation tolerances.
- g. Field apply bituminous coating to backs of frames that will be filled with grout containing anti-freezing agents.
- 2. Floor Anchors: Provide floor anchors for each jamb and mullion that extends to floor, and secure with post installed expansion anchors.
 - a. Floor anchors may be set with power-actuated fasteners instead of post installed expansion anchors if so indicated and approved on Shop Drawings.
- 3. Metal-Stud Partitions: Solidly pack mineral-fiber insulation inside frames.
- 4. Masonry Walls: Coordinate installation of frames to allow for solidly filling space between frames and masonry with grout.
- 5. In-Place Concrete or Masonry Construction: Secure frames in place with post installed expansion anchors. Countersink anchors, and fill and make smooth, flush, and invisible on exposed faces.
- 6. In-Place Metal Partitions: Secure slip-on drywall frames in place according to manufacturer's written instructions.
- 7. Installation Tolerances: Adjust hollow-metal door frames for squareness, alignment, twist, and plumb to the following tolerances:
 - a. Squareness: Plus or minus 1/16 inch (1.6 mm), measured at door rabbet on a line 90 degrees from jamb perpendicular to frame head.
 - b. Alignment: Plus or minus 1/16 inch (1.6 mm), measured at jambs on a horizontal line parallel to plane of wall.
 - c. Twist: Plus or minus 1/16 inch (1.6 mm), measured at opposite face corners of jambs on parallel lines, and perpendicular to plane of wall.
 - d. Plumbness: Plus or minus 1/16 inch (1.6 mm), measured at jambs at floor.
- C. Hollow-Metal Doors: Fit hollow-metal doors accurately in frames, within clearances specified below. Shim as necessary.
 - 1. Non-Fire-Rated Steel Doors:
 - a. Between Door and Frame Jambs and Head: 1/8 inch (3.2 mm) plus or minus 1/32 inch (0.8 mm).
 - b. Between Edges of Pairs of Doors: 1/8 inch (3.2 mm) to 1/4 inch (6.3 mm) plus or minus 1/32 inch (0.8 mm).
 - c. At Bottom of Door: 5/8 inch (15.8 mm) plus or minus 1/32 inch (0.8 mm).
 - d. Between Door Face and Stop: 1/16 inch (1.6 mm) to 1/8 inch (3.2 mm) plus or minus 1/32 inch (0.8 mm).

3.4 ADJUSTING AND CLEANING

- A. Final Adjustments: Check and readjust operating hardware items immediately before final inspection. Leave work in complete and proper operating condition. Remove and replace defective work, including hollow-metal work that is warped, bowed, or otherwise unacceptable.
- B. Remove grout and other bonding material from hollow-metal work immediately after installation.

- C. Prime-Coat Touchup: Immediately after erection, sand smooth rusted or damaged areas of prime coat and apply touchup of compatible air-drying, rust-inhibitive primer.
- D. Metallic-Coated Surface Touchup: Clean abraded areas and repair with galvanizing repair paint according to manufacturer's written instructions.
- E. Touchup Painting: Cleaning and touchup painting of abraded areas of paint are specified in painting Sections.

END OF SECTION 081113

SECTION 083613 - SECTIONAL DOORS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes electrically operated, glazed aluminum sectional doors.
- B. Related Requirements:
 - 1. Section 055000 "Metal Fabrications" for miscellaneous steel supports.
 - 2. Section 087100 "Door Hardware" for cylinders for door locks.

1.2 REFERENCES

A. ANSI/DASMA 102 - American National Standard Specifications for Sectional Overhead Type Doors.

1.3 SUBMITTALS

- A. Product Data: For each type and size of sectional door and accessory.
- B. Shop Drawings: For each installation and for special components not dimensioned or detailed in manufacturer's product data.
- C. Samples: For each exposed product and for each color and texture specified.

1.4 INFORMATIONAL SUBMITTALS

A. Sample warranty.

1.5 CLOSEOUT SUBMITTALS

A. Maintenance data.

1.6 QUALITY ASSURANCE

A. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by manufacturer for both installation and maintenance of units required for this Project.

1.7 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of sectional doors that fail in materials or workmanship within specified warranty period.

SECTIONAL DOORS

- 1. Warranty Period: Five years from date of Substantial Completion.
- B. Special Finish Warranty: Manufacturer agrees to repair or replace components that show evidence of deterioration of factory-applied finishes within specified warranty period.
 - 1. Warranty Period: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. General Performance: Sectional doors shall comply with performance requirements specified without failure due to defective manufacture, fabrication, installation, or other defects in construction and without requiring temporary installation of reinforcing components.
- B. Seismic Performance: Sectional doors at attachment shall withstand the effects of earthquake motions determined according to ASCE/SEI7.

2.2 SECTIONAL DOORS

- A. Aluminum Sectional Door: Sectional door formed with hinged sections and fabricated according to DASMA 102 unless otherwise indicated.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Clopay Building Products; <u>www.clopay.com</u>.
 - b. Cornell, https://www.cornelliron.com/
 - c. Overhead Door Corporation; www.overheaddoor.com.
 - d. Raynor; www.raynor.com.
 - e. Wayne-Dalton Corp.; www.wayne-dalton.com.
 - f. Approved substitution.
 - 2. Basis-of-Design Product: 470 Series Insulated Steel Doors by Overhead Door Corporation; www.overheaddoor.com.
- B. Door Assembly: Rigid steel construction; fully insulated on the indside face with continuous steel backing on the inside face. Fabricated with steel end stiles and tongue and groove sections.
 - 1. Panel Thickness: 2 inches (51 mm).
 - 2. Exterior Surface: Ribbed
 - 3. Exterior Steel: 26 gauge, hot-dipped galvanized
 - 4. Interior Steel: 29 gauge, hot-dipped galvanized
 - 5. Springs: 50,000 cycles
 - 6. Insulation: Polystyrene
 - 7. Thermal Values: R-value of 9.83 minimum; U-value of 0.102 maximum
 - 8. Finish and Color: Two coat baked-on polyester

- a. Color: White
- 9. Windload Design: Provide to meet the Design/Performance requirements specified
- 10. Hardware: Galvanized steel hinges and fixtures. Ball bearing rollers with hardened steel races.
- 11. Lock: Interior mounted slide lock
- 12. Weatherstripping: Flexible bulb-type strip at bottom section and jamb and header seals
- 13. Track: Provide track as recommended by manufacturer to suit loading required and clearances available
- 14. Manual Operation: Chain hoist

2.3 TRACKS, SUPPORTS, AND ACCESSORIES

- A. Tracks: Manufacturer's standard, galvanized-steel track system of configuration indicated, sized for door size and weight, designed for lift type indicated and clearances indicated on Drawings. Provide complete system including brackets, bracing, and reinforcement to ensure rigid support of ball-bearing roller guides for required door type, size, weight, and loading.
 - 1. Track Reinforcement and Supports: Galvanized-steel members to support track without sag, sway, and vibration during opening and closing of doors. Slot vertical sections of track spaced 2 inches (51 mm) apart for door-drop safety device.
- B. Weatherseals: Replaceable, adjustable, continuous, compressible weather-stripping gaskets of flexible vinyl, rubber, or neoprene fitted to bottom and top of sectional door unless otherwise indicated.

2.4 HARDWARE

- A. General: Heavy-duty, corrosion-resistant hardware, with hot-dip galvanized, stainless-steel, or other corrosion-resistant fasteners, to suit door type.
- B. Hinges: Heavy-duty, galvanized-steel hinges at each end stile and at each intermediate stile, according to manufacturer's written recommendations for door size. Attach hinges to door sections through stiles and rails.
- C. Rollers: Heavy-duty rollers with steel ball-bearings in case-hardened steel races, mounted with varying projections to suit slope of track. Provide 3-inch- (76-mm-) diameter roller tires for 3-inch- (76-mm-) wide track and 2-inch- (51-mm-) diameter roller tires for 2-inch- (51-mm-) wide track.

2.5 COUNTERBALANCE MECHANISM

A. Torsion Spring: Counterbalance mechanism consisting of adjustable-tension torsion springs fabricated from steel-spring wire complying with ASTM A229/A229M, mounted on torsion shaft made of steel tube or solid steel. Provide springs designed for number of operation cycles indicated.

2.6 GENERAL FINISH REQUIREMENTS

- A. Comply with NAAMM/NOMMA's "Metal Finishes Manual for Architectural and Metal Products (AMP 500-06)" for recommendations for applying and designating finishes.
- B. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for substrate construction and other conditions affecting performance of the Work.
- B. Examine locations of electrical connections.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install sectional doors and operating equipment complete with necessary hardware, anchors, inserts, hangers, and equipment supports; according to manufacturer's written instructions and as specified.
- B. Tracks:
 - 1. Fasten vertical track assembly to opening jambs and framing, spaced not more than 24 inches apart.
 - 2. Hang horizontal track assembly from structural overhead framing with angles or channel hangers attached to framing by welding or bolting, or both.
 - 3. Provide sway bracing, diagonal bracing, and reinforcement as required for rigid installation of track and door-operating equipment.
- C. Adjust hardware and moving parts to function smoothly so that doors operate easily, free of warp, twist, or distortion.
- D. Touch-up Painting: Immediately after welding galvanized materials, clean welds and abraded galvanized surfaces and repair galvanizing to comply with ASTM A780/A780M.

3.3 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain sectional doors.

END OF SECTION 083613

SECTION 087100 - DOOR HARDWARE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Mechanical door hardware for the following:
 - a. Swinging doors.
 - 2. Cylinders for door hardware specified in other Sections.
- B. Related Requirements:
 - 1. Section 081113 "Hollow Metal Doors and Frames".
 - 2. Section 083613 "Sectional Doors" for door hardware provided as part of overhead sectional door assemblies.

1.3 COORDINATION

- A. Installation Templates: Distribute for doors, frames, and other work specified to be factory prepared. Check Shop Drawings of other work to confirm that adequate provisions are made for locating and installing door hardware to comply with indicated requirements.
- B. Electrically Operated and/or Controlled Hardware: Provide all power supplies, power transfer hinges, relays, surge protection and interfaces required for proper operation; provide wiring between hardware and control components and to building power connection in accordance with requirements described in Divisions 26 and 28
- C. Security: Coordinate installation of door hardware, keying, and access control with Owner's security consultant.
- D. Electrical System Roughing-In: Coordinate layout and installation of electrified door hardware with connections to power supplies and building safety and security systems. Do not install power supplies above ceiling. Install in MDF or IDF rooms, wall-mounted.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

DOOR HARDWARE

- 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
- B. Door Hardware Schedule: Prepared by or under the supervision of Installer's Architectural Hardware Consultant. Coordinate door hardware schedule with doors, frames, and related work to ensure proper size, thickness, hand, function, and finish of door hardware.
 - 1. Submittal Sequence: Submit door hardware schedule concurrent with submissions of Product Data, Samples, and Shop Drawings. Coordinate submission of door hardware schedule with scheduling requirements of other work to facilitate the fabrication of other work that is critical in Project construction schedule.
 - 2. Format: Use same scheduling sequence and format and use same door numbers as in door hardware schedule in the Contract Documents.
 - 3. Content: Include the following information:
 - a. Identification number, location, hand, fire rating, size, and material of each door and frame.
 - b. Locations of each door hardware set, cross-referenced to Drawings on floor plans and to door and frame schedule.
 - c. Complete designations, including name and manufacturer, type, style, function, size, quantity, function, and finish of each door hardware product.
 - d. Description of electrified door hardware sequences of operation and interfaces with other building control systems.
 - e. Fastenings and other installation information.
 - f. Explanation of abbreviations, symbols, and designations contained in door hardware schedule.
 - g. Mounting locations for door hardware.
 - h. List of related door devices specified in other Sections for each door and frame.
- C. Keying Schedule: Prepared by or under the supervision of Installer's Architectural Hardware Consultant, detailing Owner's final keying instructions for locks. Include schematic keying diagram and index each key set to unique door designations that are coordinated with the Contract Documents.

1.5 INFORMATIONAL SUBMITTALS

- A. Field quality-control reports.
- B. Sample Warranty: For special warranty.

1.6 CLOSEOUT SUBMITTALS

- A. Maintenance Data: For each type of door hardware to include in maintenance manuals.
- B. Schedules: Final door hardware and keying schedule.

1.7 QUALITY ASSURANCE

- A. Installer Qualifications: Supplier of products and an employer of workers trained and approved by product manufacturers and of an Architectural Hardware Consultant who is available during the course of the Work to consult Contractor, Architect, and Owner about door hardware and keying.
 - 1. Warehousing Facilities: In Project's vicinity.
 - 2. Scheduling Responsibility: Preparation of door hardware and keying schedule.
 - 3. Engineering Responsibility: Preparation of data for electrified door hardware, including Shop Drawings, based on testing and engineering analysis of manufacturer's standard units in assemblies similar to those indicated for this Project.

1.8 DELIVERY, STORAGE, AND HANDLING

- A. Inventory door hardware on receipt and provide secure lock-up for door hardware delivered to Project site.
- B. Tag each item or package separately with identification coordinated with the final door hardware schedule, and include installation instructions, templates, and necessary fasteners with each item or package.
- C. Deliver keys to manufacturer of key control system for subsequent delivery to Owner.

1.9 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace components of door hardware that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Structural failures including excessive deflection, cracking, or breakage.
 - b. Faulty operation of doors and door hardware.
 - c. Deterioration of metals, metal finishes, and other materials beyond normal weathering and use.
 - 2. Warranty Period: Three years from date of Substantial Completion unless otherwise indicated below:
 - a. Exit Devices: Two years from date of Substantial Completion.
 - b. Manual Closers: 10 years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain each type of door hardware from single manufacturer.

2.2 PERFORMANCE REQUIREMENTS

- A. Means of Egress Doors: Latches do not require more than 15 lbf (67 N) to release the latch. Locks do not require use of a key, tool, or special knowledge for operation.
- B. Accessibility Requirements: For door hardware on doors in an accessible route, comply with ICC A117.1.
 - 1. Provide operating devices that do not require tight grasping, pinching, or twisting of the wrist and that operate with a force of not more than 5 lbf (22.2 N).
 - 2. Comply with the following maximum opening-force requirements:
 - a. Interior, Non-Fire-Rated Hinged Doors: 5 lbf (22.2 N) applied perpendicular to door.
 - b. Fire Doors: Minimum opening force allowable by authorities having jurisdiction.
 - 3. Bevel raised thresholds with a slope of not more than 1:2. Provide thresholds not more than 1/2 inch (13 mm) high.
 - 4. Adjust door closer sweep periods so that, from an open position of 90 degrees, the door will take at least 5 seconds to move to a position of 12 degrees from the latch.
 - 5. Adjust spring hinges so that, from an open position of 70 degrees, the door will take at least 1.5 seconds to move to the closed position.

2.3 SCHEDULED DOOR HARDWARE

- A. Provide products for each door that comply with requirements indicated in Part 2 and door hardware schedule.
 - 1. Door hardware is scheduled on Drawings and in Section 087100.01 "Door Hardware Sets".

2.4 PARTS LIST

- A. Refer to Section 087100.01 "Door Hardware Sets".
 - 1. Substitutions must be submitted in advance.

2.5 KEYING

- A. Keying System: Factory registered, complying with guidelines in BHMA A156.28, appendix. Contractor shall provide one extra key blank for each lock. Owner will cut keys. Incorporate decisions made in keying conference.
 - a. Coordinate keying with owner's requirements.
 - b. Contractor shall provide lock cores. Owner will pin and install cores.

2.6 FABRICATION

- A. Manufacturer's Nameplate: Do not provide products that have manufacturer's name or trade name displayed in a visible location except in conjunction with required fire-rating labels and as otherwise approved by Architect.
 - 1. Manufacturer's identification is permitted on rim of lock cylinders only.
- B. Base Metals: Produce door hardware units of base metal indicated, fabricated by forming method indicated, using manufacturer's standard metal alloy, composition, temper, and hardness. Furnish metals of a quality equal to or greater than that of specified door hardware units and BHMA A156.18.
- C. Fasteners: Provide door hardware manufactured to comply with published templates prepared for machine, wood, and sheet metal screws. Provide screws that comply with commercially recognized industry standards for application intended, except aluminum fasteners are not permitted. Provide Phillips flat-head screws with finished heads to match surface of door hardware unless otherwise indicated.
 - 1. Concealed Fasteners: For door hardware units that are exposed when door is closed, except for units already specified with concealed fasteners. Do not use through bolts for installation where bolt head or nut on opposite face is exposed unless it is the only means of securely attaching the door hardware. Where through bolts are used on hollow door and frame construction, provide sleeves for each through bolt.
 - 2. Fire-Rated Applications:
 - a. Wood or Machine Screws: For the following:
 - 1) Hinges mortised to doors or frames.
 - 2) Strike plates to frames.
 - 3) Closers to doors and frames.
 - b. Steel Through Bolts: For the following unless door blocking is provided:
 - 1) Surface hinges to doors.
 - 2) Closers to doors and frames.
 - 3) Surface-mounted exit devices.
 - 3. Spacers or Sex Bolts: For through bolting of hollow-metal doors.
 - 4. Gasketing Fasteners: Provide noncorrosive fasteners for exterior applications and elsewhere as indicated.
- D. Door Labels:
 - 1. Provide permanent labels for all doors indicating door number per schedule. Labels to be permanently affixed to butt and of door leaf near top hinge.

2.7 FINISHES

A. Provide finishes complying with BHMA A156.18 as indicated in door hardware schedule.

- B. Protect mechanical finishes on exposed surfaces from damage by applying a strippable, temporary protective covering before shipping.
- C. Appearance of Finished Work: Variations in appearance of abutting or adjacent pieces are acceptable if they are within one-half of the range of approved Samples. Noticeable variations in the same piece are not acceptable. Variations in appearance of other components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine doors and frames, with Installer present, for compliance with requirements for installation tolerances, labeled fire-rated door assembly construction, wall and floor construction, and other conditions affecting performance of the Work.
- B. Examine roughing-in for electrical power systems to verify actual locations of wiring connections before electrified door hardware installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Steel Doors and Frames: For surface-applied door hardware, drill and tap doors and frames according to ANSI/SDI A250.6.
- B. Wood Doors: Comply with door and hardware manufacturers' written instructions.

3.3 INSTALLATION

- A. Mounting Heights: Mount door hardware units at heights to comply with the following unless otherwise indicated or required to comply with governing regulations.
 - 1. Standard Steel Doors and Frames: ANSI/SDI A250.8.
 - 2. Custom Steel Doors and Frames: HMMA 831.
- B. Install each door hardware item to comply with manufacturer's written instructions. Where cutting and fitting are required to install door hardware onto or into surfaces that are later to be painted or finished in another way, coordinate removal, storage, and reinstallation of surface protective trim units with finishing work. Do not install surface-mounted items until finishes have been completed on substrates involved.
 - 1. Set units level, plumb, and true to line and location. Adjust and reinforce attachment substrates as necessary for proper installation and operation.
 - 2. Drill and countersink units that are not factory prepared for anchorage fasteners. Space fasteners and anchors according to industry standards.

- C. Hinges: Install types and in quantities indicated in door hardware schedule, but not fewer than the number recommended by manufacturer for application indicated or one hinge for every 30 inches (750 mm) of door height, whichever is more stringent, unless other equivalent means of support for door, such as spring hinges or pivots, are provided.
- D. Lock Cylinders: Install construction cores to secure building and areas during construction period.
 - 1. Replace construction cores with permanent cores as directed by Owner.
 - 2. Furnish permanent cores to Owner for installation.
- E. Perimeter Gasketing: Apply to head and jamb, forming seal between door and frame.
 - 1. Do not notch perimeter gasketing to install other surface-applied hardware.
- F. Door Bottoms: Apply to bottom of door, forming seal with threshold when door is closed.

3.4 FIELD QUALITY CONTROL

- A. Independent Architectural Hardware Consultant: Owner will engage a qualified independent Architectural Hardware Consultant to perform inspections and to prepare inspection reports.
 - 1. Independent Architectural Hardware Consultant will inspect door hardware and state in each report whether installed work complies with or deviates from requirements, including whether door hardware is properly installed and adjusted.

3.5 ADJUSTING

- A. Initial Adjustment: Adjust and check each operating item of door hardware and each door to ensure proper operation or function of every unit. Replace units that cannot be adjusted to operate as intended. Adjust door control devices to compensate for final operation of heating and ventilating equipment and to comply with referenced accessibility requirements.
 - 1. Door Closers: Adjust sweep period to comply with accessibility requirements and requirements of authorities having jurisdiction.
 - 2. Spring Hinges: Adjust to achieve positive latching when door is allowed to close freely from an open position of 70 degrees and so that closing time complies with accessibility requirements of authorities having jurisdiction.
 - 3. Electric Strikes: Adjust horizontal and vertical alignment of keeper to properly engage lock bolt.

3.6 CLEANING AND PROTECTION

- A. Clean adjacent surfaces soiled by door hardware installation.
- B. Clean operating items as necessary to restore proper function and finish.
- C. Provide final protection and maintain conditions that ensure that door hardware is without damage or deterioration at time of Substantial Completion.

3.7 MAINTENANCE SERVICE

- A. Maintenance Tools and Instructions: Furnish a complete set of specialized tools and maintenance instructions for Owner's continued adjustment, maintenance, and removal and replacement of door hardware.
- B. Maintenance Service: Beginning at Substantial Completion, maintenance service shall include 12 months' full maintenance by skilled employees of door hardware Installer. Include quarterly preventive maintenance, repair or replacement of worn or defective components, lubrication, cleaning, and adjusting as required for proper door and door hardware operation. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.

3.8 DEMONSTRATION

A. Engage Installer to train Owner's maintenance personnel to adjust, operate, and maintain door hardware.

3.9 DOOR HARDWARE SCHEDULE

A. As indicated on Drawings and in Section 087100.01 "Door Hardware Sets".

END OF SECTION 087100

Hardware Group No. 1

For use on Door #(s):

SD-1

Provide each PR door(s) with the following:

QTY		DESCRIPTION	CATALOG NUMBER	FINISH	MFR
6	EA	HINGE	5BB1HW 4.5 X 4.5 NRP	630	IVE
2	EA	SURFACE BOLT	SB360 12" SNB	604	IVE
1	EA	VANDL STOREROOM LOCK	ND96TD RHO x 7/8" LIP STRIKE	626	SCH
1	EA	FSIC CORE	23-030 EV29 T	626	SCH
2	EA	KICK PLATE	8400 10" X 1" LDW B-CS	630	IVE
2	EA	WALL STOP	WS406/407CVX	630	IVE
1	EA	RAIN DRIP	346C	AL	PEM
1	EA	ASTRAGAL	355CS	AL	PEM
			PULL SIDE ACTIVE LEAF		
2	EA	DOOR SWEEP	315CN	AL	PEM
1	EA	THRESHOLD	172A MSES10	AL	PEM

Hardware Group No. 2

For use on Door #(s): SD-2

Provide each SGL door(s) with the following:

		() 0			
QTY		DESCRIPTION	CATALOG NUMBER	FINISH	MFR
3	EA	HINGE	5BB1HW 4.5 X 4.5 NRP	630	IVE
1	EA	VANDL STOREROOM LOCK	ND96TD RHO	626	SCH
1	EA	FSIC CORE	23-030 EV29 T	626	SCH
1	EA	KICK PLATE	8400 10" X 2" LDW B-CS	630	IVE
1	EA	WALL STOP	WS406/407CVX	630	IVE
1	EA	RAIN DRIP	346C	AL	PEM
1	SET	SEALS	S88D	DKB	PEM
1	EA	DOOR SHOE	216AV 36"	AL	PEM
1	EA	THRESHOLD	172A MSES10	AL	PEM

Hardware Group No. 3

For use on Door #(s):

SD-3

Provide each RU door(s) with the following:

QTY		DESCRIPTION	CATALOG NUMBER	FINISH	MFR
1	EA	MORTISE CYLINDER	20-061 ICX 36-083	626	SCH
1	EA	FSIC CORE	23-030 EV29 T	626	SCH
			BALANCE OF HARDWARE BY		
			DOOR MANUFACTURER		

COORDINATE CYLINDER TYPE, LENGTH, AND CAM REQUIREMENTS WITH DOOR MANUFACTURER.

SECTION 089119 - OPERABLE LOUVERS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Operable, extruded-aluminum louvers.

1.2 DEFINITIONS

- A. Louver Terminology: Definitions of terms for metal louvers contained in AMCA 501 apply to this Section unless otherwise defined in this Section or in referenced standards.
- B. Horizontal Louver: Louver with horizontal blades (i.e., the axes of the blades are horizontal).
- C. Vertical Louver: Louver with vertical blades (i.e., the axes of the blades are vertical).
- D. Drainable-Blade Louver: Louver with blades having gutters that collect water and drain it to channels in jambs and mullions, which carry it to bottom of unit and away from opening.
- E. Wind-Driven-Rain-Resistant Louver: Louver that provides specified wind-driven rain performance, as determined by testing according to AMCA 500-L.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. For louvers specified to bear AMCA seal, include printed catalog pages showing specified models with appropriate AMCA Certified Ratings Seals.
- B. Shop Drawings: For louvers and accessories. Include plans, elevations, sections, details, and attachments to other work. Show frame profiles and blade profiles, angles, and spacing.
 - 1. Show weep paths, gaskets, flashing, sealant, and other means of preventing water intrusion.
 - 2. Show mullion profiles and locations.
- C. Samples: For each type of metal finish required.
- D. Delegated-Design Submittal: For louvers indicated to comply with structural and seismic performance requirements, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.4 INFORMATIONAL SUBMITTALS

- A. Product Test Reports: Based on evaluation of comprehensive tests performed according to AMCA 500-L by a qualified testing agency or by manufacturer and witnessed by a qualified testing agency, for each type of louver and showing compliance with performance requirements specified.
- B. Windborne-debris-impact-resistance test reports.

1.5 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D1.2/D1.2M, "Structural Welding Code Aluminum."

1.6 FIELD CONDITIONS

A. Field Measurements: Verify actual dimensions of openings by field measurements before fabrication.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain louvers from single source from a single manufacturer where indicated to be of same type, design, or factory-applied color finish.

2.2 PERFORMANCE REQUIREMENTS

- A. Structural Performance: Louvers shall withstand the effects of gravity loads and the following loads and stresses within limits and under conditions indicated without permanent deformation of louver components, noise or metal fatigue caused by louver-blade rattle or flutter, or permanent damage to fasteners and anchors. Wind pressures shall be considered to act normal to the face of the building.
 - 1. Wind Loads: Determine loads based on pressures as indicated on Drawings.
 - 2. Wind Loads: Determine loads based on a uniform pressure of 30 lbf/sq. ft. (1436 Pa) acting inward or outward.
 - 3. Wind Loads: Determine loads based on pressures indicated below:
- B. Seismic Performance: Louvers, including attachments to other construction, shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. Design earthquake spectral response acceleration, short period (Sds) for Project if dictated in structural design

- C. Louver Performance Ratings: Provide louvers complying with requirements specified, as demonstrated by testing manufacturer's stock units identical to those provided, except for length and width according to AMCA 500-L.
- D. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.
 - 1. Temperature Change (Range): 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.
- E. SMACNA Standard: Comply with recommendations in SMACNA's "Architectural Sheet Metal Manual" for fabrication, construction details, and installation procedures.
- F. Windborne-Debris-Impact Resistance: Louvers located within 30 feet (9.1 m) of grade shall pass enhanced-protection, large-missile testing requirements in ASTM E 1996 for Wind Zone 1 when tested according to ASTM E 1886. Test specimens shall be no smaller in width and length than louvers indicated for use on Project.

2.3 OPERABLE EXTRUDED-ALUMINUM LOUVERS

- A. Louver Construction and Operation: Provide operable louvers with extruded-aluminum frames and blades of not less than 0.080-inch (2.03-mm) nominal thickness, and with operating mechanisms to suit louver sizes.
 - 1. Motor operation with two-position, spring-return application (with power on, motor opens louver; with power off, spring closes louver); 110-V, 60-Hz motor and limit switch; equipped with frame-mounted switch.
- A. Dual-Blade Operable Louver L-S#: Fixed drainable blades and operable plain blades combined in single frame.
 - 1. Basis of Design Product: Subject to compliance with performance requirements, provide Ruskin ELC445D Drainable Combination Louver or comparable product by one the following:
 - a. Air Balance Inc.; a Mestek company.
 - b. Air Flow Company, Inc.
 - c. Airolite Company, LLC (The).
 - d. All-Lite Architectural Products.
 - e. American Warming and Ventilating
 - f. Arrow United Industries; a division of Mestek, Inc.
 - g. Construction Specialties, Inc.
 - h. Dowco Products Group; Safe Air of Illinois.
 - i. Greenheck Fan Corporation.
 - j. Industrial Louvers, Inc.
 - k. Louvers & Dampers; a division of Mestek, Inc.
 - l. Nailor Industries Inc.
 - m. NCA Manufacturing, Inc.
 - n. Nystrom, Inc.

- o. Pottorff.
- p. Reliable Products, Inc.
- q. Ruskin, Inc.
- r. United Enertech.
- 2. Louver Depth: 4 inches (100 mm), overall.
- 3. Fixed Drainable-Blade Angle: 45 degrees.
- 4. Louver Performance Ratings
 - a. Free Area: Not less than that specified on drawings
 - b. Point of Beginning Water Penetration: Not less than 950 fpm (4.8 m/s).
 - c. Air Performance: Not more than 0.10-inch wg (25-Pa) static pressure drop at 750fpm (3.8-m/s) free-area intake velocity or 0.20-inch wg static pressure drop at 1000fpm free area exhaust. Unless noted otherwise on drawings.
 - d. Air Leakage: Not more than 1.5 cfm/sq. ft. (7.6 L/s per sq. m) of louver gross area at a differential static pressure of 0.15-inch wg (37 Pa) with operable louver blades closed.
- 5. AMCA Seal: Mark units with AMCA Certified Ratings Seal.

2.4 MATERIALS

- A. Aluminum Extrusions: ASTM B 221 (ASTM B 221M), Alloy 6063-T5, T-52, or T6.
- B. Aluminum Sheet: ASTM B 209 (ASTM B 209M), Alloy 3003 or 5005 with temper as required for forming, or as otherwise recommended by metal producer for required finish.
- C. Fasteners: Use types and sizes to suit unit installation conditions.
 - 1. Use hex-head or Phillips pan-head screws for exposed fasteners unless otherwise indicated.
 - 2. For fastening aluminum, use aluminum or 300 series stainless-steel fasteners.
 - 3. For fastening galvanized steel, use hot-dip-galvanized steel or 300 series stainless-steel fasteners.
 - 4. For fastening stainless steel, use 300 series stainless-steel fasteners.
 - 5. For color-finished louvers, use fasteners with heads that match color of louvers.

2.5 FABRICATION

- A. Factory-assemble louvers to minimize field splicing and assembly. Disassemble units as necessary for shipping and handling limitations. Clearly mark units for reassembly and coordinated installation.
- B. Maintain equal louver blade spacing, including separation between blades and frames at head and sill, to produce uniform appearance.
- C. Fabricate frames, including integral sills, to fit in openings of sizes indicated, with allowances made for fabrication and installation tolerances, adjoining material tolerances, and perimeter sealant joints.

- 1. Frame Type: Channel unless otherwise indicated.
- D. Include supports, anchorages, and accessories required for complete assembly.
- E. Provide vertical mullions of type and at spacings indicated, but not more than is recommended by manufacturer, or 72 inches (1830 mm) o.c., whichever is less.
 - 1. Fully Recessed Mullions: Where indicated, provide mullions fully recessed behind louver blades. Where length of louver exceeds fabrication and handling limitations, fabricate with close-fitting blade splices designed to permit expansion and contraction.
 - 2. Exposed Mullions: Where indicated, provide units with exposed mullions of same width and depth as louver frame. Where length of louver exceeds fabrication and handling limitations, provide interlocking split mullions designed to permit expansion and contraction.
- F. Join frame members to each other and to fixed louver blades with fillet welds concealed from view unless otherwise indicated or size of louver assembly makes bolted connections between frame members necessary.

2.6 ALUMINUM FINISHES

- A. Finish louvers after assembly.
- B. High-Performance Organic Finish: Two-coat fluoropolymer finish complying with AAMA 2605 and containing not less than 70 percent PVDF resin by weight in color coat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and openings, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Coordinate setting drawings, diagrams, templates, instructions, and directions for installation of anchorages that are to be embedded in concrete or masonry construction. Coordinate delivery of such items to Project site.

3.3 INSTALLATION

A. Locate and place louvers level, plumb, and at indicated alignment with adjacent work.

OPERABLE LOUVERS

- B. Use concealed anchorages where possible. Provide brass or lead washers fitted to screws where required to protect metal surfaces and to make a weathertight connection.
- C. Form closely fitted joints with exposed connections accurately located and secured.
- D. Provide perimeter reveals and openings of uniform width for sealants and joint fillers, as indicated.
- E. Protect unpainted galvanized and nonferrous-metal surfaces that are in contact with concrete, masonry, or dissimilar metals from corrosion and galvanic action by applying a heavy coating of bituminous paint or by separating surfaces with waterproof gaskets or nonmetallic flashing.
- F. Install concealed gaskets, flashings, joint fillers, and insulation as louver installation progresses, where weathertight louver joints are required. Comply with Section 079200 "Joint Sealants" for sealants applied during louver installation.

3.4 ADJUSTING AND CLEANING

- A. Test operable louvers and adjust as needed to produce fully functioning units that comply with requirements.
- B. Clean exposed louver surfaces that are not protected by temporary covering, to remove fingerprints and soil during construction period. Do not let soil accumulate during construction period.
- C. Before final inspection, clean exposed surfaces with water and a mild soap or detergent not harmful to finishes. Thoroughly rinse surfaces and dry.
- D. Restore louvers damaged during installation and construction so no evidence remains of corrective work. If results of restoration are unsuccessful, as determined by Architect, remove damaged units and replace with new units.
 - 1. Touch up minor abrasions in finishes with air-dried coating that matches color and gloss of, and is compatible with, factory-applied finish coating.

END OF SECTION 089116

SECTION 089119 - FIXED LOUVERS

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Fixed, extruded-aluminum louvers.

1.2 DEFINITIONS

- A. Louver Terminology: Definitions of terms for metal louvers contained in AMCA 501 apply to this Section unless otherwise defined in this Section or in referenced standards.
- B. Horizontal Louver: Louver with horizontal blades (i.e., the axes of the blades are horizontal).
- C. Vertical Louver: Louver with vertical blades (i.e., the axes of the blades are vertical).
- D. Drainable-Blade Louver: Louver with blades having gutters that collect water and drain it to channels in jambs and mullions, which carry it to bottom of unit and away from opening.
- E. Wind-Driven-Rain-Resistant Louver: Louver that provides specified wind-driven rain performance, as determined by testing according to AMCA 500-L.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. For louvers specified to bear AMCA seal, include printed catalog pages showing specified models with appropriate AMCA Certified Ratings Seals.
- B. Shop Drawings: For louvers and accessories. Include plans, elevations, sections, details, and attachments to other work. Show frame profiles and blade profiles, angles, and spacing.
 - 1. Show weep paths, gaskets, flashing, sealant, and other means of preventing water intrusion.
 - 2. Show mullion profiles and locations.
- C. Samples: For each type of metal finish required.
- D. Delegated-Design Submittal: For louvers indicated to comply with structural and seismic performance requirements, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

1.4 INFORMATIONAL SUBMITTALS

- A. Product Test Reports: Based on evaluation of comprehensive tests performed according to AMCA 500-L by a qualified testing agency or by manufacturer and witnessed by a qualified testing agency, for each type of louver and showing compliance with performance requirements specified.
- B. Windborne-debris-impact-resistance test reports.

1.5 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D1.2/D1.2M, "Structural Welding Code Aluminum."

1.6 FIELD CONDITIONS

A. Field Measurements: Verify actual dimensions of openings by field measurements before fabrication.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Source Limitations: Obtain louvers from single source from a single manufacturer where indicated to be of same type, design, or factory-applied color finish.

2.2 PERFORMANCE REQUIREMENTS

- A. Structural Performance: Louvers shall withstand the effects of gravity loads and the following loads and stresses within limits and under conditions indicated without permanent deformation of louver components, noise or metal fatigue caused by louver-blade rattle or flutter, or permanent damage to fasteners and anchors. Wind pressures shall be considered to act normal to the face of the building.
 - 1. Wind Loads: Determine loads based on pressures as indicated on Drawings.
 - 2. Wind Loads: Determine loads based on a uniform pressure of 30 lbf/sq. ft. (1436 Pa) acting inward or outward.
 - 3. Wind Loads: Determine loads based on pressures indicated below:
- B. Seismic Performance: Louvers, including attachments to other construction, shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. Design earthquake spectral response acceleration, short period (Sds) for Project if dictated in structural design

- C. Louver Performance Ratings: Provide louvers complying with requirements specified, as demonstrated by testing manufacturer's stock units identical to those provided, except for length and width according to AMCA 500-L.
- D. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.
 - 1. Temperature Change (Range): 120 deg F (67 deg C), ambient; 180 deg F (100 deg C), material surfaces.
- E. SMACNA Standard: Comply with recommendations in SMACNA's "Architectural Sheet Metal Manual" for fabrication, construction details, and installation procedures.
- F. Windborne-Debris-Impact Resistance: Louvers located within 30 feet (9.1 m) of grade shall pass enhanced-protection, large-missile testing requirements in ASTM E 1996 for Wind Zone 1 when tested according to ASTM E 1886. Test specimens shall be no smaller in width and length than louvers indicated for use on Project.

2.3 FIXED, EXTRUDED-ALUMINUM LOUVERS

- A. Horizontal, Non-Drainable-Blade Louver:
 - 1. Basis of Design Product: Subject to compliance with performance requirements, provide Ruskin ELC6375DXD Drainable Combination Louver or comparable product by one the following:
 - a. Air Balance Inc.; a Mestek company.
 - b. Air Flow Company, Inc.
 - c. Airolite Company, LLC (The).
 - d. All-Lite Architectural Products.
 - e. American Warming and Ventilating
 - f. Arrow United Industries; a division of Mestek, Inc.
 - g. Construction Specialties, Inc.
 - h. Dowco Products Group; Safe Air of Illinois.
 - i. Greenheck Fan Corporation.
 - j. Industrial Louvers, Inc.
 - k. Louvers & Dampers; a division of Mestek, Inc.
 - l. Nailor Industries Inc.
 - m. NCA Manufacturing, Inc.
 - n. Nystrom, Inc.
 - o. Pottorff.
 - p. Reliable Products, Inc.
 - q. United Enertech.
 - 2. Louver Depth: < 5 inches, unless shown or otherwise noted on Drawings.
 - 3. Frame and Blade Nominal Thickness: Not less than 0.080 inch (2.03 mm) for blades and 0.080 inch (2.03 mm) for frames.
 - 4. Louver Performance Ratings:

- a. Free Area: Not less than 8.5 sq. ft. (0.79 sq. m for 48-inch- (1220-mm-) wide by 48-inch- (1220-mm-) high louver, or as called for in Drawings.
- b. Point of Beginning Water Penetration: Not less than 0.01 oz/sq. ft. at 1250 fms free area velocity.

2.4 MATERIALS

- A. Aluminum Extrusions: ASTM B 221 (ASTM B 221M), Alloy 6063-T5, T-52, or T6.
- B. Aluminum Sheet: ASTM B 209 (ASTM B 209M), Alloy 3003 or 5005 with temper as required for forming, or as otherwise recommended by metal producer for required finish.
- C. Fasteners: Use types and sizes to suit unit installation conditions.
 - 1. Use hex-head or Phillips pan-head screws for exposed fasteners unless otherwise indicated.
 - 2. For fastening aluminum, use aluminum or 300 series stainless-steel fasteners.
 - 3. For fastening galvanized steel, use hot-dip-galvanized steel or 300 series stainless-steel fasteners.
 - 4. For fastening stainless steel, use 300 series stainless-steel fasteners.
 - 5. For color-finished louvers, use fasteners with heads that match color of louvers.

2.5 FABRICATION

- A. Factory-assemble louvers to minimize field splicing and assembly. Disassemble units as necessary for shipping and handling limitations. Clearly mark units for reassembly and coordinated installation.
- B. Maintain equal louver blade spacing, including separation between blades and frames at head and sill, to produce uniform appearance.
- C. Fabricate frames, including integral sills, to fit in openings of sizes indicated, with allowances made for fabrication and installation tolerances, adjoining material tolerances, and perimeter sealant joints.
 - 1. Frame Type: Channel unless otherwise indicated.
- D. Include supports, anchorages, and accessories required for complete assembly.
- E. Provide vertical mullions of type and at spacings indicated, but not more than is recommended by manufacturer, or 72 inches (1830 mm) o.c., whichever is less.
 - 1. Fully Recessed Mullions: Where indicated, provide mullions fully recessed behind louver blades. Where length of louver exceeds fabrication and handling limitations, fabricate with close-fitting blade splices designed to permit expansion and contraction.
 - 2. Exposed Mullions: Where indicated, provide units with exposed mullions of same width and depth as louver frame. Where length of louver exceeds fabrication and handling limitations, provide interlocking split mullions designed to permit expansion and contraction.

F. Join frame members to each other and to fixed louver blades with fillet welds concealed from view unless otherwise indicated or size of louver assembly makes bolted connections between frame members necessary.

2.6 ALUMINUM FINISHES

- A. Finish louvers after assembly.
- B. High-Performance Organic Finish: Two-coat fluoropolymer finish complying with AAMA 2605 and containing not less than 70 percent PVDF resin by weight in color coat. Prepare, pretreat, and apply coating to exposed metal surfaces to comply with coating and resin manufacturers' written instructions.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and openings, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Coordinate setting drawings, diagrams, templates, instructions, and directions for installation of anchorages that are to be embedded in concrete or masonry construction. Coordinate delivery of such items to Project site.

3.3 INSTALLATION

- A. Locate and place louvers level, plumb, and at indicated alignment with adjacent work.
- B. Use concealed anchorages where possible. Provide brass or lead washers fitted to screws where required to protect metal surfaces and to make a weathertight connection.
- C. Form closely fitted joints with exposed connections accurately located and secured.
- D. Provide perimeter reveals and openings of uniform width for sealants and joint fillers, as indicated.
- E. Protect unpainted galvanized and nonferrous-metal surfaces that are in contact with concrete, masonry, or dissimilar metals from corrosion and galvanic action by applying a heavy coating of bituminous paint or by separating surfaces with waterproof gaskets or nonmetallic flashing.

F. Install concealed gaskets, flashings, joint fillers, and insulation as louver installation progresses, where weathertight louver joints are required. Comply with Section 079200 "Joint Sealants" for sealants applied during louver installation.

3.4 ADJUSTING AND CLEANING

- A. Clean exposed louver surfaces that are not protected by temporary covering, to remove fingerprints and soil during construction period. Do not let soil accumulate during construction period.
- B. Before final inspection, clean exposed surfaces with water and a mild soap or detergent not harmful to finishes. Thoroughly rinse surfaces and dry.
- C. Restore louvers damaged during installation and construction so no evidence remains of corrective work. If results of restoration are unsuccessful, as determined by Architect, remove damaged units and replace with new units.
 - 1. Touch up minor abrasions in finishes with air-dried coating that matches color and gloss of, and is compatible with, factory-applied finish coating.

END OF SECTION 089119

SECTION 092900 - GYPSUM BOARD

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Mold-resistant gypsum board.

1.3 DELIVERY, STORAGE AND HANDLING

A. Store materials inside under cover and keep them dry and protected against weather, condensation, direct sunlight, construction traffic, and other potential causes of damage. Stack panels flat and supported on risers on a flat platform to prevent sagging.

1.4 FIELD CONDITIONS

- A. Environmental Limitations: Comply with ASTM C 840 requirements or gypsum board manufacturer's written instructions, whichever are more stringent.
- B. Do not install paper-faced gypsum panels until installation areas are enclosed and conditioned.
- C. Do not install panels that are wet, moisture damaged, and mold damaged.
 - 1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.
 - 2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Resistance-Rated Assemblies: For fire-resistance-rated assemblies, provide materials and construction identical to those tested in assembly indicated according to ASTM E 119 by an independent testing agency.

2.2 GYPSUM BOARD, GENERAL

A. Size: Provide maximum lengths and widths available that will minimize joints in each area and that correspond with support system indicated.

2.3 INTERIOR GYPSUM BOARD

- A. Gypsum Wallboard: ASTM C 1396/C 1396M.
- B. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. American Gypsum.
 - 2. CertainTeed Corp.
 - 3. Georgia-Pacific Gypsum LLC.
 - 4. Lafarge North America Inc.
 - 5. National Gypsum Company.
 - 6. PABCO Gypsum.
 - 7. Temple-Inland.
 - 8. USG Corporation.
- C. Mold-Resistant Gypsum Board: ASTM C1396/C1396M. With moisture- and mold-resistant core and paper surfaces.
 - 1. Core: 5/8 inch (15.9 mm); Type X, where required for fire-resistance.
 - 2. Long Edges: Tapered.
 - 3. Mold Resistance: ASTM D3273, score of 10 as rated according to ASTM D3274.

2.4 TRIM ACCESSORIES

- A. Interior Trim: ASTM C 1047.
 - 1. Material: Galvanized or aluminum-coated steel sheet or rolled zinc
 - 2. Shapes:
 - a. Cornerbead.
 - b. L-Bead: L-shaped; exposed long flange receives joint compound.
 - c. Expansion (control) joint.

2.5 JOINT TREATMENT MATERIALS

- A. General: Comply with ASTM C 475/C 475M.
- B. Joint Tape:
 - 1. Interior Gypsum Board: Paper.
 - 2. Glass-Mat Gypsum Sheathing Board: 10-by-10 glass mesh.

- 3. Tile Backing Panels: As recommended by panel manufacturer.
- C. Joint Compound for Interior Gypsum Board: For each coat, use formulation that is compatible with other compounds applied on previous or for successive coats.
 - 1. Prefilling: At open joints, rounded or beveled panel edges, and damaged surface areas, use setting-type taping compound.
 - 2. Embedding and First Coat: For embedding tape and first coat on joints, fasteners, and trim flanges, use drying-type, all-purpose compound.
 - a. Use setting-type compound for installing paper-faced metal trim accessories.
 - 3. Fill Coat: For second coat, use drying-type, all-purpose compound.
 - 4. Finish Coat: For third coat, use drying-type, all-purpose compound.

2.6 AUXILIARY MATERIALS

- A. General: Provide auxiliary materials that comply with referenced installation standards and manufacturer's written instructions.
- B. Steel Drill Screws: ASTM C 1002 unless otherwise indicated.
 - 1. Use screws complying with ASTM C 954 for fastening panels to steel members from 0.033 to 0.112 inch (0.84 to 2.84 mm) thick.
 - 2. For fastening cementitious backer units, use screws of type and size recommended by panel manufacturer.
- C. Acoustical Sealant: Manufacturer's standard nonsag, paintable, nonstaining latex sealant complying with ASTM C 834. Product effectively reduces airborne sound transmission through perimeter joints and openings in building construction as demonstrated by testing representative assemblies according to ASTM E 90.
- D. Thermal Insulation: As specified in Section 072100 "Thermal Insulation."
- E. Vapor Retarder: As specified in Section 072600 "Vapor Retarders."

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and substrates including welded hollow-metal frames and support framing, with Installer present, for compliance with requirements and other conditions affecting performance of the Work.
- B. Examine panels before installation. Reject panels that are wet, moisture damaged, and mold damaged.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 APPLYING AND FINISHING PANELS, GENERAL

- A. Comply with ASTM C 840.
- B. Install ceiling panels across framing to minimize the number of abutting end joints and to avoid abutting end joints in central area of each ceiling. Stagger abutting end joints of adjacent panels not less than one framing member.
- C. Install panels with face side out. Butt panels together for a light contact at edges and ends with not more than 1/16 inch (1.5 mm) of open space between panels. Do not force into place.
- D. Locate edge and end joints over supports, except in ceiling applications where intermediate supports or gypsum board back-blocking is provided behind end joints. Do not place tapered edges against cut edges or ends. Stagger vertical joints on opposite sides of partitions. Do not make joints other than control joints at corners of framed openings.
- E. Form control and expansion joints with space between edges of adjoining gypsum panels.
- F. Cover both faces of support framing with gypsum panels in concealed spaces (above ceilings, etc.), except in chases braced internally.
 - 1. Unless concealed application is indicated or required for sound, fire, air, or smoke ratings, coverage may be accomplished with scraps of not less than 8 sq. ft. (0.7 sq. m) in area.
 - 2. Fit gypsum panels around ducts, pipes, and conduits.
 - 3. Where partitions intersect structural members projecting below underside of floor/roof slabs and decks, cut gypsum panels to fit profile formed by structural members; allow 1/4-to 3/8-inch- (6.4- to 9.5-mm-) wide joints to install sealant.
- G. Isolate perimeter of gypsum board applied to non-load-bearing partitions at structural abutments. Provide 1/4- to 1/2-inch- (6.4- to 12.7-mm-) wide spaces at these locations and trim edges with edge trim where edges of panels are exposed. Seal joints between edges and abutting structural surfaces with acoustical sealant.
- H. Wood Framing: Install gypsum panels over wood framing, with floating internal corner construction. Do not attach gypsum panels across the flat grain of wide-dimension lumber, including floor joists and headers. Float gypsum panels over these members or provide control joints to counteract wood shrinkage.
- I. STC-Rated Assemblies: Seal construction at perimeters, behind control joints, and at openings and penetrations with a continuous bead of acoustical sealant. Install acoustical sealant at both faces of partitions at perimeters and through penetrations. Comply with ASTM C 919 and with manufacturer's written instructions for locating edge trim and closing off sound-flanking paths around or through assemblies, including sealing partitions above acoustical ceilings.
- J. Install sound attenuation blankets before installing gypsum panels unless blankets are readily installed after panels have been installed on one side.

3.3 APPLYING INTERIOR GYPSUM BOARD

A. Single-Layer Application:

- 1. On ceilings, apply gypsum panels before wall/partition board application to greatest extent possible and at right angles to framing unless otherwise indicated.
- 2. On partitions/walls, apply gypsum panels horizontally (perpendicular to framing) unless otherwise indicated or required by fire-resistance-rated assembly, and minimize end joints.
 - a. Stagger abutting end joints not less than one framing member in alternate courses of panels.
 - b. At stairwells and other high walls, install panels horizontally unless otherwise indicated or required by fire-resistance-rated assembly.
- 3. On Z-shaped furring members, apply gypsum panels vertically (parallel to framing) with no end joints. Locate edge joints over furring members.
- 4. Fastening Methods: Apply gypsum panels to supports with steel drill screws.

3.4 INSTALLING TRIM ACCESSORIES

- A. General: For trim with back flanges intended for fasteners, attach to framing with same fasteners used for panels. Otherwise, attach trim according to manufacturer's written instructions.
- B. Control Joints: Install control joints according to ASTM C 840 and in specific locations approved by Architect for visual effect.
- C. Interior Trim: Install in the following locations:
 - 1. Cornerbead: Use at outside corners
 - 2. L-Bead: Use where indicated or recommended by manufacturer.
 - 3. J-trim: Use at exposed edges of boards and where boards abut caulked joints with dissimilar materials.

3.5 FINISHING GYPSUM BOARD

- A. General: Treat gypsum board joints, interior angles, edge trim, control joints, penetrations, fastener heads, surface defects, and elsewhere as required to prepare gypsum board surfaces for decoration. Promptly remove residual joint compound from adjacent surfaces.
- B. Apply joint tape over gypsum board joints, except for trim products specifically indicated as not intended to receive tape.
- C. Gypsum Board Finish Levels: Finish panels to level 3 and according to ASTM C 840:
- D. Clean gypsum board of substances that could impair bond of paints, including dust, dirt, oil, grease, and incompatible paints and encapsulants.

3.6 **PROTECTION**

A. Protect adjacent surfaces from drywall compound and promptly remove from floors and other non-drywall surfaces. Repair surfaces stained, marred, or otherwise damaged during drywall application.

- B. Protect installed products from damage from weather, condensation, direct sunlight, construction, and other causes during remainder of the construction period.
- C. Provide Vapor retarder (minimum: 4–6 mil) behind gypsum board on all exterior walls.
- D. Remove and replace panels that are wet, moisture damaged, and mold damaged.
 - 1. Indications that panels are wet or moisture damaged include, but are not limited to, discoloration, sagging, or irregular shape.
 - 2. Indications that panels are mold damaged include, but are not limited to, fuzzy or splotchy surface contamination and discoloration.

END OF SECTION 092900

SECTION 099113 - EXTERIOR PAINTING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes surface preparation and the application of paint systems on exterior substrates. Provide labor, materials, tools and other equipment, services and supervision required to complete exterior painting work as indicated on Finish Schedules, Drawings and Specifications. Utilize exterior paint systems for exterior substrates.
- B. Related Requirements:
 - 1. Section 055000 "Metal Fabrications".
 - 2. Section 074646 "Fiber Cement Siding".
 - 3. Section 081113 "Hollow Metal Doors and Frames".
 - 4. Section 087100 "Door Hardware" for preparation prior to finishing of existing doors and frames to remain.

1.2 DEFINITIONS

- A. Gloss Level 1: Matte or Flat Finish: Not more than 5 units at 60 degrees and 10 units at 85 degrees, according to ASTM D 523.
- B. Gloss Level 3: Eggshell Finish: 10 to 25 units at 60 degrees and 10 to 35 units at 85 degrees, according to ASTM D 523.
- C. Gloss Level 4: Satin Finish: 20 to 35 units at 60 degrees and not less than 35 units at 85 degrees, according to ASTM D 523.
- D. Gloss Level 5: Semi-Gloss Finish: 35 to 70 units at 60 degrees, according to ASTM D 523.
- E. Gloss Level 6: Gloss Finish: 70 to 85 units at 60 degrees, according to ASTM D 523.
- F. Gloss Level 7: High Gloss Finish: More than 85 units at 60 degrees, according to ASTM D 523.

1.3 REFERENCES

- A. ASTM International:
 - 1. ASTM C834 Latex Sealing Compounds.
 - 2. ASTM D16 Standard Terminology Relating to Paint, Varnish, Lacquer, and Related Products.
 - 3. ASTM D4442 Standard Test Methods for Direct Moisture Content Measurement of Wood and Wood-Base Materials.

- B. Architectural Painting Specification Manual by the Master Painters Institute (MPI), including Evaluation, Systems, Preparation and Approved Product List (MPI Manual).
- C. Test Method for Measuring Total Volatile Organic Compound Content of Consumer Products, Method 24 (for Surface Coatings) of the Environmental Protection Agency (EPA).

1.4 SYSTEM DESCRIPTION

- A. Painting and finishing shall include all coating systems materials, including primers, emulsions (except asphalt based), enamels, stains, sealers and fillers and other applied materials, whether used as prime, intermediate or finish coats.
- B. Materials to Finish:
 - 1. Unless otherwise indicated in documents, all Work receives painting and finishing. Consult Drawings, Schedules, and other Specification Sections for complete requirements. Where materials required to be finished are not indicated in the Finish Schedule or Drawings, refer to the MPI Manual for the appropriate finish; provide premium grade finish.
 - 2. Existing construction receives painting and finishing as indicated. Consult Drawings, Schedules, and other Specification Sections for complete requirements. Where materials required to be finished are not indicated in the Finish Schedule or Drawings, refer to the MPI Manual for the appropriate finish; provide premium grade finish.
- C. Materials Not to Finish:
 - 1. Finished metal surfaces of anodized aluminum, polyvinylidene fluoride (PVDF), stainless steel, chromium plate, copper, bronze and similar finished metals will not require finish painting, except as indicated otherwise.
 - 2. Glass and plastic, except as noted otherwise.
 - 3. Materials having complete factory finish or that require installer finishing, except as indicated otherwise. Shop priming of ferrous metal items and shop-fabricated components is included under various Sections.
 - 4. Walls and ceilings in concealed and generally inaccessible areas, above suspended ceilings, furred areas, pipe spaces, duct shafts, and the like.
 - 5. Acoustical ceiling tile and their suspension systems, unless indicated otherwise.
 - 6. Concrete floors, except as indicated to be painted.
 - 7. CMU walls, except as indicated on Drawings to be painted.
 - 8. Moving parts of operating units, moving parts of mechanical and electrical units, linkages, sensing devices, motor and fan shafts, and the like.
 - 9. Code-required labels such as Underwriter's Laboratories, Factory Mutual, and Warnock-Hershey or any equipment identification, performance rating, name or nomenclature plates, and the like.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product. Include preparation requirements and application instructions.

- B. Samples for Verification: For each type of paint system and each color and gloss of topcoat.
 - 1. Submit Samples on rigid backing, 8 inches square.
 - 2. Step coats on Samples to show each coat required for system.
 - 3. Label each coat of each Sample.
 - 4. Label each Sample for location and application area.
- C. Product List: For each product indicated, include the following:
 - 1. Cross-reference to paint system and locations of application areas. Use same designations indicated on Drawings and in schedules.
 - 2. VOC content.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials, from the same product run, that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Paint: 5 percent, but not less than 1 gal. of each material and color applied.

1.7 QUALITY ASSURANCE

- A. Quality Standard:
 - 1. Work of this Section shall conform to not less than the minimum standards for material and Work including inspection and warranty requirements set forth in the MPI Manual.
 - 2. Work of this Section shall be of the grade and finish system in Accordance with the MPI as indicated in Painting and Finishing Schedule in Part 3 of this Section.
- B. Qualifications:
 - 1. Product Manufacturers: As listed in PART 2 of this Section. No substitutions.
- C. Regulatory Requirements:
 - 1. Comply with applicable federal, state, and local requirements and publications pertaining to environmental protection and the protection of the health and safety of workers, visitors to the site, and persons occupying the Project Site.
 - 2. Where conflict among requirements or with this specification exists, the most stringent shall govern.

1.8 DELIVERY, STORAGE, AND HANDLING

- A. Store materials not in use in tightly covered containers in well-ventilated areas with ambient temperatures continuously maintained at not less than 45 deg F.
 - 1. Maintain containers in clean condition, free of foreign materials and residue.
 - 2. Remove rags and waste from storage areas daily.

1.9 FIELD CONDITIONS

- A. Apply paints only when temperature of surfaces to be painted and ambient air temperatures are between 50 and 95 deg F.
- B. Perform no exterior painting work unless environmental conditions are within MPI and paint manufacturer's requirements or until adequate weather protection is provided. Where required, suitable weatherproof covering and sufficient heating facilities shall be in place to maintain minimum ambient air and substrate temperatures for 24 hours before, during and after paint application.
- C. Do not apply paints in snow, rain, fog, or mist; when relative humidity exceeds 85 percent; at temperatures less than 5 deg F (3° C) above the dew point; or to damp or wet surfaces.
- D. Perform no painting or decorating work when the maximum moisture content of the substrate exceeds:
 - a. 15 percent for wood.
 - b. 12 percent for plaster and gypsum board.
- E. Conduct all moisture tests using a properly calibrated electronic Moisture Meter.

1.10 SPECIAL PROJECT WARRANTY

A. Warranty: Furnish a two (2)-year Maintenance Bond. The Maintenance Bond shall warrant that all painting work has been performed in accordance with accepted industry quality standards.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. The Sherwin Williams Company (Basis of Design).
- B. The following manufacturers will be considered for substitution subject to compliance with procedures specified in Section 012500 Product Requirements, and the properties specified for each product in the PART 3 EXTERIOR PAINTING SCHEDULE.
 - 1. Benjamin Moore.
 - 2. PPG.

2.2 PAINT, GENERAL

- A. Materials:
 - 1. All materials used on this job (primers, paints, coatings, varnishes, stains, lacquers, fillers, etc.) shall be from a single source manufacturer for each system used.
 - 2. Other materials such as linseed oil, shellac, thinners, solvents, etc., shall be the highest quality product, compatible with paint materials being used as required.

3. VOC Content: Provide materials that comply with VOC limits of authorities having jurisdiction.

2.3 EQUIPMENT

- A. Painting and Decorating Equipment: To best trade standards for type of product and application.
- B. Spray Painting Equipment: Of ample capacity, suited to the type and consistency of paint or coating being applied and kept clean and in good working order at all times.

2.4 MIXING AND TINTING

- A. Unless otherwise specified herein or pre-approved, all paint shall be ready-mixed and pre-tinted. Re-mix all paint in containers prior to and during application to ensure break-up of lumps, complete dispersion of settled pigment, and color and gloss uniformity.
- B. Paste, powder or catalyzed paint mixes shall be mixed in strict accordance with manufacturer's written instructions.
- C. Where thinner is used, addition shall not exceed paint manufacturer's recommendations. Do not use kerosene or any such organic solvents to thin water-based paints.
- D. If required, thin paint for spraying according in strict accordance with paint manufacturer's instructions. If directions are not on container, obtain instructions in writing from manufacturer and provide copy of instructions to Consultant.

2.5 FINISH AND COLORS

A. Refer to Color and Material Schedule and Drawings for identification and location of colors.

2.6 GLOSS AND SHEEN RATINGS:

A. As indicated in Part 3 of these Specifications.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions, with Applicator present, for compliance with requirements for maximum moisture content and other conditions affecting performance of the Work.
- B. Maximum Moisture Content of Substrates: When measured with an electronic moisture meter as follows:
 - 1. Concrete: 12 percent.
 - 2. Masonry (Clay and CMU): 12 percent.

EXTERIOR PAINTING

- 3. Wood: 15 percent.
- 4. Portland Cement Plaster: 12 percent.
- 5. Gypsum Board: 12 percent.
- C. Verify suitability of substrates, including surface conditions and compatibility with existing finishes and primers.
- D. Proceed with coating application only after unsatisfactory conditions have been corrected.
 - 1. Application of coating indicates acceptance of surfaces and conditions.

3.2 PREPARATION

- A. Comply with manufacturer's written instructions and recommendations in "MPI Manual" applicable to substrates and paint systems indicated.
- B. Remove hardware, covers, plates, and similar items already in place that are removable and are not to be painted. If removal is impractical or impossible because of size or weight of item, provide surface-applied protection before surface preparation and painting.
 - 1. After completing painting operations, use workers skilled in the trades involved to reinstall items that were removed. Remove surface-applied protection.
- C. Clean substrates of substances that could impair bond of paints, including dust, dirt, oil, grease, and incompatible paints and encapsulants.
 - 1. Remove incompatible primers and reprime substrate with compatible primers or apply tie coat as required to produce paint systems indicated.
- D. Steel Substrates: Remove rust, loose mill scale, and shop primer if any. Clean using methods recommended in writing by paint manufacturer.
- E. Shop-Primed Steel Substrates: Clean field welds, bolted connections, and abraded areas of shop paint, and paint exposed areas with the same material as used for shop priming to comply with SSPC-PA 1 for touching up shop-primed surfaces.
- F. Galvanized-Metal Substrates: Remove grease and oil residue from galvanized sheet metal by mechanical methods to produce clean, lightly etched surfaces that promote adhesion of subsequently applied paints.
- G. Wood Substrates:
 - 1. Scrape and clean knots. Before applying primer, apply coat of knot sealer recommended in writing by topcoat manufacturer for exterior use in paint system indicated.
 - 2. Sand surfaces that will be exposed to view, and dust off.
 - 3. Prime edges, ends, faces, undersides, and backsides of wood.
 - 4. After priming, fill holes and imperfections in the finish surfaces with putty or plastic wood filler. Sand smooth when dried.

3.3 APPLICATION

- A. Apply paints according to manufacturer's written instructions and recommendations.
 - 1. Use applicators and techniques suited for paint and substrate indicated.
 - 2. Paint surfaces behind movable items same as similar exposed surfaces. Before final installation, paint surfaces behind permanently fixed items with prime coat only.
 - 3. Paint both sides and edges of exterior doors and entire exposed surface of exterior door frames.
 - 4. Do not paint over labels of independent testing agencies or equipment name, identification, performance rating, or nomenclature plates.
 - 5. Primers specified in painting schedules may be omitted on items that are factory primed or factory finished if acceptable to topcoat manufacturers.
- B. Tint undercoats same color as topcoat, but tint each undercoat a lighter shade to facilitate identification of each coat if multiple coats of same material are to be applied. Provide sufficient difference in shade of undercoats to distinguish each separate coat.
- C. If undercoats or other conditions show through topcoat, apply additional coats until cured film has a uniform paint finish, color, and appearance.
- D. Apply paints to produce surface films without cloudiness, spotting, holidays, laps, brush marks, roller tracking, runs, sags, ropiness, or other surface imperfections. Cut in sharp lines and color breaks.
- E. Exterior Mechanical and Electrical Equipment:
 - 1. General: Exterior painting and finishing of mechanical and electrical items includes all exposed items whether factory-finished or not.
 - 2. Additional painting and finishing of mechanical and electrical items is indicated in Divisions 23 and 26.

3.4 FIELD QUALITY CONTROL

- A. Tolerances: Final application shall match color and texture of approved samples and shall be smooth, uniform in appearance, color, texture, sheen, and shall be free of runs, sags, holidays, lap marks, air bubbles, pin holes, and other detrimental effects in accordance with requirements of the MPI and this Specification.
- B. Inspection and Testing:
 - 1. Provide and pay for inspection and testing of the Work of this Section in accordance with the warranty provisions of the MPI.
 - 2. Inspection Agency's Duties:
 - a. Provide qualified personnel at Project Site. Cooperate with Architect and Contractor in performance of services.
 - b. Perform required inspection, sampling, and testing of Products and applications and ascertain compliance with requirements of MPI.

- c. After each inspection and test, submit 1 copy of written report within 5 calendar days to Architect and Contractor. Include in each report the Project title, date of report, date and time of inspection, weather conditions during visit, name of inspector, identification of Product and substrate, location in Project, type of inspection or test, results of tests, and whether results indicate conformity with Contract Documents.
- d. Promptly notify Architect and Contractor in writing of observed irregularities or non-conformity of workmanship or Projects. When requested by Architect, provide interpretation of test results, evaluation of analysis of cause (in event of test failure), and recommendations for remedial action.
- 3. Inspection Agency's Limitations:
 - a. Inspection Agency may not release, revoke, alter, or enlarge on requirements of Contract Documents.
 - b. Inspection Agency many not approve or accept any portion of the Work for Owner or Architect.
 - c. Inspection Agency may not assume duties of Contractor or Applicator.
 - d. Inspection Agency has no authority to stop the Work.
- 4. Applicator's Duties:
 - a. Pay inspection fees associated with inspection and warranty requirements set forth in MPI.
 - b. Notify inspection agency not less than 10 full working days prior to beginning Work of this Section.
 - c. Notify inspection agency not less than 2 full working days prior to expected time for operations requiring inspection or testing services.
 - d. Allow full access to the Work. Cooperate with inspection and testing personnel in performance of their duties of inspecting and testing of Work.
 - e. Provide incidental labor and facilities to provide access to Work to be inspected or tested. Repair destructive testing sites.
 - f. Correct deficiencies noted by Inspection Agency.

3.5 CLEANING AND PROTECTION

- A. At end of each workday, remove rubbish, empty cans, rags, and other discarded materials from Project site.
- B. After completing paint application, clean spattered surfaces. Remove spattered paints by washing, scraping, or other methods. Do not scratch or damage adjacent finished surfaces.
- C. Protect work of other trades against damage from paint application. Correct damage to work of other trades by cleaning, replacing, and refinishing, as approved by Architect, and leave in an undamaged condition.
- D. At completion of construction activities of other trades, touch up and restore damaged or defaced painted surfaces.

3.6 EXTERIOR PAINTING SCHEDULE

- A. Structural Steel and Metal Fabrications (including steel doors and frames).
 - 1. Two Coats (over alkyd primer).
 - 2. Finish Sheen: Gloss Level 5.
 - a. Primer: S-W Kem Kromik Universal Metal Primer.
 - b. Finish: S-W Pro Industrial Direct-to-Metal Acrylic, Semi-Gloss.
- B. Galvanized-Metal Substrates: (including metal deck and hollow metal frames).
 - 1. Surface Preparation: Clean with water-based cleaner, degreaser.
 - 2. Two Coats (over acrylic primer).
 - 3. Finish Sheen: Gloss Level 5.
 - a. Primer: S-W Pro Industrial Pro-Cry Universal Acrylic Primer.
 - b. Finish: S-W Pro Industrial Direct-to-Metal Acrylic, Semi-Gloss.
- C. Cementitious Composition Board Substrates (including wood fascia boards):
 - 1. Latex System:
 - a. Prime Coat: Matching topcoat.
 - b. Intermediate Coat: Matching topcoat.
 - c. Topcoat: Exterior latex paint, low sheen.

END OF SECTION 099113

SECTION 104413 - FIRE PROTECTION CABINETS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Fire-protection cabinets for the following:
 - a. Portable fire extinguishers.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product. Show door hardware, cabinet type, trim style, and panel style.
- B. Samples for Verification: For each type of exposed finish required, prepared on Samples 6 by 6 inches (150 by 150 mm) square.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance Data: For fire-protection cabinets to include in maintenance manuals.

1.5 COORDINATION

- A. Coordinate size of fire-protection cabinets to ensure that type and capacity of fire extinguishers indicated are accommodated.
- B. Coordinate sizes and locations of fire-protection cabinets with wall depths.

1.6 SEQUENCING

A. Apply decals on field-painted fire-protection cabinets after painting is complete.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Fire-Rated Fire-Protection Cabinets: Listed and labeled to comply with requirements in ASTM E 814 for fire-resistance rating of walls where they are installed.

2.2 FIRE-PROTECTION CABINET

- A. Cabinet Type: Suitable for fire extinguisher.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. American Specialties, Inc.
 - b. Guardian Fire Equipment, Inc.
 - c. Modern Metal Products, Division of Technico Inc.
- B. Cabinet Construction: Non fire-rated.
- C. Cabinet Material: Aluminum sheet for non-rated.
- D. Surface Mounted Cabinet (FEC):
- E. Cabinet Trim Material: Aluminum sheet.
- F. Door Material: Aluminum sheet.
- G. Door Style: Fully glazed panel with frame.
- H. Door Glazing: Break glass.
- I. Door Hardware: Manufacturer's standard door-operating hardware of proper type for cabinet type, trim style, and door material and style indicated.
 - 1. Provide recessed door pull and friction latch.
 - 2. Provide manufacturer's standard hinge permitting door to open 180 degrees.
- J. Accessories:
 - 1. Break-Glass Strike: Manufacturer's standard metal strike, complete with chain and mounting clip, secured to cabinet.
 - 2. Door Lock: Cylinder lock, keyed alike to other cabinets.
 - 3. Identification: Lettering complying with authorities having jurisdiction for letter style, size, spacing, and location. Locate on cabinet.
 - a. Identify fire extinguisher in fire-protection cabinet with the words "FIRE EXTINGUISHER."

- 1) Location: Applied to cabinet door.
- 2) Application Process: Decals.
- 3) Lettering Color: Red.
- 4) Orientation: Vertical.

2.3 FABRICATION

- A. Fire-Protection Cabinets: Provide manufacturer's standard box (tub) with trim, frame, door, and hardware to suit cabinet type, trim style, and door style indicated.
 - 1. Weld joints and grind smooth.
 - 2. Provide factory-drilled mounting holes.
 - 3. Prepare doors and frames to receive locks.
 - 4. Install door locks at factory.
- B. Cabinet Doors: Fabricate doors according to manufacturer's standards, from materials indicated and coordinated with cabinet types and trim styles.
 - 1. Fabricate door frames with tubular stiles and rails and hollow-metal design, minimum 1/2 inch (13 mm) thick.
 - 2. Miter and weld perimeter door frames.
- C. Cabinet Trim: Fabricate cabinet trim in one piece with corners mitered, welded, and ground smooth.

2.4 GENERAL FINISH REQUIREMENTS

- A. Comply with NAAMM's AMP 500, "Metal Finishes Manual for Architectural and Metal Products," for recommendations for applying and designating finishes.
- B. Protect mechanical finishes on exposed surfaces of fire-protection cabinets from damage by applying a strippable, temporary protective covering before shipping.
- C. Finish fire-protection cabinets after assembly.
- D. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine walls and partitions for suitable framing depth and blocking where recessed and semirecessed cabinets will be installed.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Prepare recesses for recessed and semi-recessed fire-protection cabinets as required by type and size of cabinet and trim style.

3.3 INSTALLATION

- A. General: Install fire-protection cabinets in locations and at mounting heights indicated
 - 1. Fire-Protection Cabinets: 48 inches (1219 mm) above finished floor to top of cabinet.
- B. Fire-Protection Cabinets: Fasten cabinets to structure, square and plumb.
 - 1. Unless otherwise indicated, provide recessed fire-protection cabinets. If wall thickness is inadequate for recessed cabinets, provide semi-recessed fire-protection cabinets.
 - 2. Provide inside latch and lock for break-glass panels.
 - 3. Fasten mounting brackets to inside surface of fire-protection cabinets, square and plumb.
- C. Identification: Apply decals at locations indicated.

3.4 ADJUSTING AND CLEANING

- A. Remove temporary protective coverings and strippable films, if any, as fire-protection cabinets are installed unless otherwise indicated in manufacturer's written installation instructions.
- B. Adjust fire-protection cabinet doors to operate easily without binding. Verify that integral locking devices operate properly.
- C. On completion of fire-protection cabinet installation, clean interior and exterior surfaces as recommended by manufacturer.
- D. Touch up marred finishes or, replace fire-protection cabinets that cannot be restored to factoryfinished appearance. Use only materials and procedures recommended or furnished by fireprotection cabinet and mounting bracket manufacturers.
- E. Replace fire-protection cabinets that have been damaged or have deteriorated beyond successful repair by finish touchup or similar minor repair procedures.

END OF SECTION 104413

SECTION 104416 - FIRE EXTINGUISHERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes portable, hand-carried fire extinguishers and mounting brackets for fire extinguishers.
- B. Related Requirements:
 - 1. Section 104413 "Fire Protection Cabinets."

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product. Include rating and classification, material descriptions, dimensions of individual components and profiles, and finishes for fire extinguisher and mounting brackets.
- B. Product Schedule: For fire extinguishers. Coordinate final fire-extinguisher schedule with fireprotection cabinet schedule to ensure proper fit and function.

1.4 INFORMATIONAL SUBMITTALS

A. Warranty: Sample of special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fire extinguishers to include in maintenance manuals.

1.6 COORDINATION

A. Coordinate type and capacity of fire extinguishers with fire-protection cabinets to ensure fit and function.

1.7 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace fire extinguishers that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Failure of hydrostatic test according to NFPA 10.
 - b. Faulty operation of valves or release levers.
 - 2. Warranty Period: Six years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. NFPA Compliance: Fabricate and label fire extinguishers to comply with NFPA 10, "Portable Fire Extinguishers."
- B. Fire Extinguishers: Listed and labeled for type, rating, and classification by an independent testing agency acceptable to authorities having jurisdiction.
 - 1. Provide fire extinguishers approved, listed, and labeled by FM Global.

2.2 PORTABLE, HAND-CARRIED FIRE EXTINGUISHERS

- A. Fire Extinguishers: Type, size, and capacity for each fire-protection cabinet indicated.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. JL Industries, Inc.; a division of the Activar Construction Products Group.
 - b. Kidde Residential and Commercial Division.
 - c. Larsen's Manufacturing Company.
 - 2. Valves: Manufacturer's standard.
 - 3. Handles and Levers: Manufacturer's standard.
 - 4. Instruction Labels: Include pictorial marking system complying with NFPA 10, Appendix B.
- B. Multipurpose Dry-Chemical Type in Aluminum Container: UL-rated 4A:80B:C, 10-lb (4.6-kg) nominal capacity, with monoammonium phosphate-based dry chemical in enameled-aluminum container.
 - 1. Basis-of-Design Product: Larsen's MP10 extinguisher.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine fire extinguishers for proper charging and tagging.
 - 1. Remove and replace damaged, defective, or undercharged fire extinguishers.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. General: Install fire extinguishers in locations indicated and in compliance with requirements of authorities having jurisdiction.
 - 1. Mounting Brackets: 54 inches (1372 mm) above finished floor to top of fire extinguisher.
- B. Mounting Brackets: Fasten mounting brackets to surfaces, square and plumb, at locations indicated.

END OF SECTION 104416

SECTION 230529 - HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Fastener systems.
 - 2. Equipment supports.
- B. See Division 23 Section "Vibration Controls for HVAC Piping and Equipment" for vibration isolation devices.
- C. See Division 23 Section(s) "Metal Ducts" for duct hangers and supports.

1.3 DEFINITIONS

A. Terminology: As defined in MSS SP-90, "Guidelines on Terminology for Pipe Hangers and Supports."

1.4 PERFORMANCE REQUIREMENTS

- A. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.
- B. Design seismic-restraint hangers and supports for piping and equipment and obtain approval from authorities having jurisdiction.

1.5 SUBMITTALS

- A. Product Data: For the following:
 - 1. Fastener systems.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection:
 - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified.
 - 2. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified.

2.2 FASTENER SYSTEMS

- A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
 - 1. Available Manufacturers:
 - a. Hilti, Inc.
 - b. ITW Ramset/Red Head.
 - c. Masterset Fastening Systems, Inc.
 - d. MKT Fastening, LLC.
 - e. Powers Fasteners.
- B. Mechanical-Expansion Anchors: Insert-wedge-type zinc-coated steel, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
 - 1. Available Manufacturers:
 - a. B-Line Systems, Inc.; a division of Cooper Industries.
 - b. Empire Industries, Inc.
 - c. Hilti, Inc.
 - d. ITW Ramset/Red Head.
 - e. MKT Fastening, LLC.
 - f. Powers Fasteners.

2.3 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural-steel shapes.

2.4 MISCELLANEOUS MATERIALS

- A. Structural Steel: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
- B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Non-staining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi (34.5-MPa), 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT APPLICATIONS

- A. Specific hanger and support requirements are specified in Sections specifying piping systems and equipment.
- B. Use hangers and supports with galvanized, metallic coatings for piping and equipment that will not have field-applied finish.
- C. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- D. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
 - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
- E. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction to attach to top flange of structural shape.
 - 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 - 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 - 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
 - 6. C-Clamps (MSS Type 23): For structural shapes.
 - 7. Welded-Steel Brackets: For support of pipes from below, or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb.
 - b. Medium (MSS Type 32): 1500 lb.
 - c. Heavy (MSS Type 33): 3000 lb.

- 8. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
- 9. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
- F. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches (32 mm).
 - 2. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41 roll hanger with springs.
 - 3. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to absorb expansion and contraction of piping system from base support.
- G. Comply with MFMA-102 for metal framing system selections and applications that are not specified in piping system Sections.
- H. Use mechanical-expansion anchors instead of building attachments where required in concrete construction.

3.2 HANGER AND SUPPORT INSTALLATION

- A. Fastener System Installation:
 - 1. Install powder-actuated fasteners in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 - 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.
- B. Install hangers and supports complete with necessary inserts, bolts, rods, nuts, washers, and other accessories.
- C. Equipment Support Installation: Fabricate from welded-structural-steel shapes.
- D. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- E. Load Distribution: Install hangers and supports so piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

3.3 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment and make smooth bearing surface.

C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.4 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

3.5 PAINTING

- A. Touch Up: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 230529

SECTION 230548 – VIBRATION CONTROL FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. This Section includes the following:
 - 1. Spring hangers.
 - 2. Flexible connectors
 - 3. Miscellaneous support products.

1.3 DEFINITIONS

- A. IBC: International Building Code.
- B. ICC-ES: ICC-Evaluation Service.
- C. OSHPD: Office of Statewide Health Planning and Development for the State of California.

1.4 SUBMITTALS

- A. Product Data: For the following:
 - 1. Include rated load, rated deflection, and overload capacity for each vibration isolation device.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Seismic-Restraint Loading:
 - 1. Site Class as Defined in the IBC: See S0.2.
 - 2. Assigned Seismic Use Group or Building Category as Defined in the IBC: See S0.2.
 - a. Component Importance Factor: 1.0.
 - b. Component Response Modification Factor: Refer to ASCE Standard 7-10, Chapter 13.
 - c. Component Amplification Factor: Refer to ASCE Standard 7-10, Chapter 13.

- 3. Design Spectral Response Acceleration at Short Periods (0.2 Second): See S0.2.
- 4. Design Spectral Response Acceleration at 1.0-Second Period: See S0.2.
- 5. Rated strengths, features, and applications shall be as defined in reports by an agency acceptable to authorities having jurisdiction.
 - a. Structural Safety Factor: Strength in tension, shear, and pullout force of components shall be at least five times the maximum seismic forces to which they are subjected.

2.2 VIBRATION ISOLATORS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Amber/Booth Company, Inc.
 - 2. Kinetics Noise Control.
 - 3. Mason Industries.
 - 4. Approved equivalent.
- B. Double-Deflection Spring Hangers, Type SH-1: Vibration hangers shall contain a steel spring and 0.3-inch deflection neoprene element in series. The neoprene element shall be molded with a rod isolation bushing that passes through the hanger box. Spring diameters and hanger box lower hole sizes shall be large enough to permit the hanger rod to swing through a 30-degree arc before contacting the hole and short circuiting the spring. Springs shall have a minimum additional travel to solid equal to 50 percent of the rated deflection. Submittals shall include a scale drawing of the hanger showing misalignment capability.
 - 1. Mason Industries type 30N
 - 2. Or approved equivalent.

F. FLEXIBLE CONNECTORS

- G. Flexible Duct Connector, Type FC-1: Flexible glass fabric double coated with neoprene. Airtight, water-tight and fire-retardant.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Ductmate Industries, Inc.
 - b. Duro Dyne Inc.
 - c. Ventfabrics, Inc.
 - d. Ward Industries; a brand of Hart & Cooley, Inc.
 - 2. Materials: Flame-retardant or noncombustible fabrics.
 - 3. Coatings and Adhesives: Comply with UL 181, Class 1
 - 4. Meta-Edged Connectors: Factory fabricated with a fabric strip 3-1/2 inches wide attached to two strips of 2-3/4-inch-wide, 0.028-inch-thick, galvanized sheet steel or 0.032-inch-thick aluminum sheets. Provide metal compatible with connected ducts.
 - 5. Indoor System, Flexible Connector Fabric: Glass fabric double coated with neoprene.
 - a. Minimum Weight: 26 oz./sq. yd.
 - b. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
 - c. Service Temperature: Minus 40 to plus 200 deg F.

2.3 ACCESSORIES

- A. Resilient Caulk: Paintable and non-hardening
 - 1. USG Acoustical Sealant.
 - 2. Pecora Corporation Acoustical Sealant BA098.
 - 3. 3M Vibration Control Systems Fire Stop 2000.
- B. Clay Packing: Moldable, non-curing, one component fire-rated putty pads for protection of electrical outlet boxes and reduction of sound transmission.
 - 1. Johns Manville Firetemp Intumescent Putty Pads
- G. Resilient Isolation Washer Bushings: To be used such that direct contact between bolt and equipment is eliminated. One-piece, molded, oil- and water-resistant neoprene, with a flat washer face. Manufactured of bridge-bearing neoprene. Maximum loading not to exceed 1000 psi.

2.4 FACTORY FINISHES

- A. Where exposed to the atmosphere all steel to be finished with dry powder coating for corrosion protection.
- B. All hardware shall be zinc electroplated.

C. Springs and housings shall be powder coated.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and equipment to receive vibration isolation and seismic-control devices for compliance with requirements for installation tolerances and other conditions affecting performance.
- B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install all vibration isolators in strict accordance with this Specification, the Manufacturer's instructions and all certified submittal data.
- B. Install vibration isolators so as not to cause any change in position of equipment, piping or ducting which would result in stresses or misalignment.
- C. Make no rigid connections between piping and building structure that degrades the noise and vibration systems specified herein.
- D. Coordinate work with other trades to avoid rigid contact with the building structure.
- E. Bring to the attention of the Architect/Engineer any conflict with other trades which will result in rigid contact with equipment or piping due to inadequate space or other unforeseen conditions prior to installation.
- F. Bring to the attention of the Architect/Engineer any discrepancies between this Specification and the field conditions prior to installation.
- G. Bring to the attention of the Architect/Engineer any conflicts due to specific equipment selection prior to installation.

3.3 VIBRATION ISOLATION SCHEDULES

A. Schedule:

Equipment	Isolator	Deflection in Inches	Base	<u>Flexible</u> Connector	Notes
Unit Heaters	SH-1	0.30			1
All in-line fans	SH-1	0.30		FC-1	1,2,3

B. Notes:

- 1. See Mechanical and Structural Drawings.
- 2. Install flexible duct connectors at the intake and discharge of all fans and air handling equipment.
- 3. Internal fan isolators are acceptable in lieu of specified external isolators provided that specified isolator performance can be achieved.

END OF SECTION 230548

SECTION 230553 - IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Equipment labels.
 - 2. Duct labels.

1.3 SUBMITTAL

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

- A. Metal Labels for Equipment:
 - 1. Material and Thickness: Brass, 0.032-inch, Stainless steel, 0.025-inch or anodized aluminum, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 - 2. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 - 3. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
 - 4. Fasteners: Stainless-steel rivets or self-tapping screws.
 - 5. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number and title where equipment is specified.
- C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number and identify Drawing numbers where equipment is indicated (plans, details, and schedules), plus the Specification Section number

and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

D. Dual Point Connection Equipment: Label "MORE THAN ONE DISCONNECT REQUIRED TO DE-ENERGIZE EQUIPMENT" in easily viewable location on RTU's listed as connected to emergency power.

2.2 DUCT LABELS

- A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.
- B. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
- C. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- D. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering.
- E. Fasteners: Stainless-steel rivets or self-tapping screws.
- F. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- G. Duct Label Contents: Include identification of duct service using same designations or abbreviations as used on Drawings, duct size, and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with duct system service lettering to accommodate both directions or as separate unit on each duct label to indicate flow direction.
 - 2. Lettering Size: At least 1-1/2 inches high.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 EQUIPMENT LABEL INSTALLATION

- A. Install or permanently fasten labels on each major item of mechanical equipment.
- B. Locate equipment labels where accessible and visible.

3.3 DUCT LABEL INSTALLATION

- A. Install self-adhesive duct labels with permanent adhesive on air ducts in the following color codes:
 - 1. Blue: For cold-air supply ducts.
 - 2. Yellow: For hot-air supply ducts.
 - 3. Green: For exhaust, return.
- B. Locate labels near points where ducts enter into concealed spaces and at maximum intervals of 50 feet in each space where ducts are exposed or concealed by removable ceiling system.

END OF SECTION 230553

SECTION 233113 - METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Single-wall rectangular ducts and fittings.
 - 2. Sheet metal materials.
 - 3. Sealants and gaskets.
 - 4. Hangers and supports.
 - 5. Seismic-restraint devices.
- B. Related Sections:
 - 1. Section 233300 "Air Duct Accessories" for dampers, sound-control devices, ductmounting access doors and panels, turning vanes, and flexible ducts.

1.3 PERFORMANCE REQUIREMENTS

- A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" and performance requirements and design criteria indicated in "Duct Schedule" Article.
- B. Structural Performance: Duct hangers and supports and seismic restraints shall withstand the effects of gravity and seismic loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards Metal and Flexible", ASCE/SEI 7, SMACNA's "Round Industrial Duct Construction Standards."
- C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of the following products:
 - 1. Liners and adhesives.
 - 2. Sealants and gaskets.
 - 3. Seismic-restraint devices.

- B. Sustainable Design Submittals:
 - 1. Product Data: For adhesives, indicating VOC content.
 - 2. Laboratory Test Reports: For adhesives, indicating compliance with requirements for low-emitting materials.
- C. Shop Drawings:
 - 1. Fabrication, assembly, and installation, including plans, elevations, sections, components, and attachments to other work.
 - 2. Factory- and shop-fabricated ducts and fittings.
 - 3. Duct layout indicating sizes, configuration, liner material, and static-pressure classes.
 - 4. Elevation of top of ducts.
 - 5. Dimensions of main duct runs from building grid lines.
 - 6. Fittings.
 - 7. Reinforcement and spacing.
 - 8. Seam and joint construction.
 - 9. Penetrations through fire-rated and other partitions.
 - 10. Equipment installation based on equipment being used on Project.
 - 11. Locations for duct accessories, including dampers, turning vanes, and access doors and panels.
 - 12. Hangers and supports, including methods for duct and building attachment, seismic restraints, and vibration isolation.
- D. Delegated-Design Submittal:
 - 1. Sheet metal thicknesses.
 - 2. Joint and seam construction and sealing.
 - 3. Reinforcement details and spacing.
 - 4. Materials, fabrication, assembly, and spacing of hangers and supports.
 - 5. Design Calculations: Calculations, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation for selecting hangers and supports and seismic restraints.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
 - 2. Suspended ceiling components.
 - 3. Structural members to which duct will be attached.
 - 4. Size and location of initial access modules for acoustical tile.
 - 5. Penetrations of smoke barriers and fire-rated construction.
 - 6. Items penetrating finished ceiling including the following:
 - a. Luminaires.
 - b. Air outlets and inlets.

- c. Speakers.
- d. Sprinklers.
- e. Access panels.
- f. Perimeter moldings.
- B. Welding certificates.
- C. Field quality-control reports.

1.6 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel," for hangers and supports. AWS D9.1M/D9.1, "Sheet Metal Welding Code," for duct joint and seam welding.
- B. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1/D1.1M, "Structural Welding Code Steel," for hangers and supports.
 - 2. AWS D1.2/D1.2M, "Structural Welding Code Aluminum," for aluminum supports.
 - 3. AWS D9.1M/D9.1, "Sheet Metal Welding Code," for duct joint and seam welding.
- C. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and System Start-up."
- D. ASHRAE/IES Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6.4.4 "HVAC System Construction and Insulation."

PART 2 - PRODUCTS

2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.
- B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, ductsupport intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards -Metal and Flexible."
- C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, ductsupport intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards -Metal and Flexible."

D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.2 SHEET METAL MATERIALS

- A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G60.
 - 2. Finishes for Surfaces Exposed to View: Mill phosphatized.
- C. PVC-Coated, Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G60.
 - 2. Minimum Thickness for Factory-Applied PVC Coating: 4 mils thick on sheet metal surface of ducts and fittings exposed to corrosive conditions, and minimum 1 mil thick on opposite surface.
 - 3. Coating Materials: Acceptable to authorities having jurisdiction for use on ducts listed and labeled by an NRTL for compliance with UL 181, Class 1.
- D. Carbon-Steel Sheets: Comply with ASTM A 1008/A 1008M, with oiled, matte finish for exposed ducts.
- E. Stainless-Steel Sheets: Comply with ASTM A 480/A 480M, Type 304 or 316, as indicated in the "Duct Schedule" Article; cold rolled, annealed, sheet. Exposed surface finish shall be No. 2B, No. 2D, No. 3, or No. 4 as indicated in the "Duct Schedule" Article.
- F. Factory- or Shop-Applied Antimicrobial Coating:
 - 1. Apply to the surface of sheet metal that will form the interior surface of the duct. An untreated clear coating shall be applied to the exterior surface.
 - 2. Antimicrobial compound shall be tested for efficacy by an NRTL and registered by the EPA for use in HVAC systems.
 - 3. Coating containing the antimicrobial compound shall have a hardness of 2H, minimum, when tested according to ASTM D 3363.
 - 4. Surface-Burning Characteristics: Maximum flame-spread index of 25 and maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
 - 5. Shop-Applied Coating Color: White.
 - 6. Antimicrobial coating on sheet metal is not required for duct containing liner treated with antimicrobial coating.
- G. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.

- 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.
- H. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.3 SEALANT AND GASKETS

- A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
- B. Two-Part Tape Sealing System:
 - 1. Tape: Woven cotton fiber impregnated with mineral gypsum and modified acrylic/silicone activator to react exothermically with tape to form hard, durable, airtight seal.
 - 2. Tape Width: 3 inches.
 - 3. Sealant: Modified styrene acrylic.
 - 4. Water resistant.
 - 5. Mold and mildew resistant.
 - 6. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 - 7. Service: Indoor and outdoor.
 - 8. Service Temperature: Minus 40 to plus 200 deg F.
 - 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum.
 - 10. Sealant shall have a VOC content of 420 g/L or less.
 - 11. Sealant shall comply with the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."
- C. Water-Based Joint and Seam Sealant:
 - 1. Application Method: Brush on.
 - 2. Solids Content: Minimum 65 percent.
 - 3. Shore A Hardness: Minimum 20.
 - 4. Water resistant.
 - 5. Mold and mildew resistant.
 - 6. VOC: Maximum 75 g/L (less water).
 - 7. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
 - 8. Service: Indoor or outdoor.
 - 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.
- D. Solvent-Based Joint and Seam Sealant:
 - 1. Application Method: Brush on.
 - 2. Base: Synthetic rubber resin.
 - 3. Solvent: Toluene and heptane.

- 4. Solids Content: Minimum 60 percent.
- 5. Shore A Hardness: Minimum 60.
- 6. Water resistant.
- 7. Mold and mildew resistant.
- 8. Sealant shall have a VOC content of 420 g/L or less.
- 9. Sealant shall comply with the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."
- 10. Maximum Static-Pressure Class: 10-inch wg, positive or negative.
- 11. Service: Indoor or outdoor.
- 12. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.
- E. Flanged Joint Sealant: Comply with ASTM C 920.
 - 1. General: Single-component, acid-curing, silicone, elastomeric.
 - 2. Type: S.
 - 3. Grade: NS.
 - 4. Class: 25.
 - 5. Use: O.
 - 6. Sealant shall have a VOC content of 420 g/L or less.
 - 7. Sealant shall comply with the testing and product requirements of the California Department of Public Health's "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."
- F. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.

2.4 HANGERS AND SUPPORTS

- A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.
- B. Hanger Rods for Corrosive Environments: Electrogalvanized, all-thread rods or galvanized rods with threads painted with zinc-chromate primer after installation.
- C. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."
- D. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.
- E. Steel Cables for Stainless-Steel Ducts: Stainless steel complying with ASTM A 492.
- F. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.
- G. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.

H. Trapeze and Riser Supports:

- 1. Supports for Galvanized-Steel Ducts: Galvanized-steel shapes and plates.
- 2. Supports for Stainless-Steel Ducts: Stainless-steel shapes and plates.
- 3. Supports for Aluminum Ducts: Aluminum or galvanized steel coated with zinc chromate.

2.5 SEISMIC-RESTRAINT DEVICES

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. B-line, an Eaton business.
 - 2. Ductmate Industries, Inc.
 - 3. Mason Industries, Inc.
- B. General Requirements for Restraint Components: Rated strengths, features, and applications shall be as defined in reports by an agency acceptable to authorities having jurisdiction.
 - 1. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they will be subjected.
- C. Channel Support System: Shop- or field-fabricated support assembly made of slotted steel channels rated in tension, compression, and torsion forces and with accessories for attachment to braced component at one end and to building structure at the other end. Include matching components and corrosion-resistant coating.
- D. Restraint Cables: ASTM A 603, galvanized-steel cables with end connections made of cadmium-plated steel assemblies with brackets, swivel, and bolts designed for restraining cable service; and with an automatic-locking and clamping device or double-cable clips.
- E. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.
- B. Install ducts according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible" unless otherwise indicated.

- C. Install ducts in maximum practical lengths.
- D. Install ducts with fewest possible joints.
- E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.
- F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.
- G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
- H. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.
- I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.
- J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.
- K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Section 233300 "Air Duct Accessories" for fire and smoke dampers.
- L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials. Comply with SMACNA's "IAQ Guidelines for Occupied Buildings Under Construction," Appendix G, "Duct Cleanliness for New Construction Guidelines."

3.2 INSTALLATION OF EXPOSED DUCTWORK

- A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.
- B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.
- C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.
- D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.
- E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 DUCT SEALING

- A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- B. Seal ducts at a minimum to the following seal classes according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible":
 - 1. Unconditioned/Semi-heated Space, Exhaust Ducts: Seal Class C.

3.4 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 5, "Hangers and Supports."
- B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 - 1. Where practical, install concrete inserts before placing concrete.
 - 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 - 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.
 - 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
 - 5. Do not use powder-actuated concrete fasteners for seismic restraints.
- C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.
- D. Hangers Exposed to View: Threaded rod and angle or channel supports.
- E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.
- F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.5 SEISMIC-RESTRAINT-DEVICE INSTALLATION

- A. Install ducts with hangers and braces designed to support the duct and to restrain against seismic forces required by applicable building codes. Comply with ASCE/SEI 7.
 - 1. Space lateral supports a maximum of 40 feet o.c., and longitudinal supports a maximum of 80 feet o.c.
 - 2. Brace a change of direction longer than 12 feet.

- B. Select seismic-restraint devices with capacities adequate to carry present and future static and seismic loads.
- C. Install cables so they do not bend across edges of adjacent equipment or building structure.
- D. Install cable restraints on ducts that are suspended with vibration isolators.
- E. Install seismic-restraint devices using methods approved by an agency acceptable to authorities having jurisdiction.
- F. Attachment to Structure: If specific attachment is not indicated, anchor bracing and restraints to structure, to flanges of beams, to upper truss chords of bar joists, or to concrete members.
- G. Drilling for and Setting Anchors:
 - 1. Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcement or embedded items during drilling. Notify the Architect if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines.
 - 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength.
 - 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened.
 - 4. Set anchors to manufacturer's recommended torque, using a torque wrench.
 - 5. Install zinc-coated steel anchors for interior applications and stainless-steel anchors for applications exposed to weather.

3.6 CONNECTIONS

- A. Make connections to equipment with flexible connectors complying with Section 233300 "Air Duct Accessories."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.7 PAINTING

A. Paint interior of metal ducts that are visible through registers and grilles and that do not have duct liner. Apply one coat of flat, black, latex paint over a compatible galvanized-steel primer. Paint materials and application requirements are specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."

3.8 FIELD QUALITY CONTROL

A. Perform tests and inspections.

- B. Leakage Tests:
 - 1. Comply with SMACNA's "HVAC Air Duct Leakage Test Manual." Submit a test report for each test.
 - 2. Test the following systems:
 - a. Ducts with a Pressure Class Higher Than 3-Inch wg: Test representative duct sections, selected by Architect from sections installed, totaling no less than 25 percent of total installed duct area for each designated pressure class.
 - 3. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements.
 - 4. Test for leaks before applying external insulation.
 - 5. Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure.
 - 6. Give seven days' advance notice for testing.
- C. Duct System Cleanliness Tests:
 - 1. Visually inspect duct system to ensure that no visible contaminants are present.
 - 2. Test sections of metal duct system, chosen randomly by Owner, for cleanliness according to "Vacuum Test" in NADCA ACR, "Assessment, Cleaning and Restoration of HVAC Systems."
 - a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed 0.75 mg/100 sq. cm.
- D. Duct system will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

3.9 DUCT CLEANING

- A. Clean new duct system(s) before testing, adjusting, and balancing.
- B. Use service openings for entry and inspection.
 - 1. Create new openings and install access panels appropriate for duct static-pressure class if required for cleaning access. Provide insulated panels for insulated or lined duct. Patch insulation and liner as recommended by duct liner manufacturer. Comply with Section 233300 "Air Duct Accessories" for access panels and doors.
 - 2. Disconnect and reconnect flexible ducts as needed for cleaning and inspection.
 - 3. Remove and reinstall ceiling to gain access during the cleaning process.
- C. Particulate Collection and Odor Control:
 - 1. When venting vacuuming system inside the building, use HEPA filtration with 99.97 percent collection efficiency for 0.3-micron-size (or larger) particles.

- 2. When venting vacuuming system to outdoors, use filter to collect debris removed from HVAC system, and locate exhaust downwind and away from air intakes and other points of entry into building.
- D. Clean the following components by removing surface contaminants and deposits:
 - 1. Air outlets and inlets (registers, grilles, and diffusers).
 - 2. Supply, return, and exhaust fans including fan housings, plenums (except ceiling supply and return plenums), scrolls, blades or vanes, shafts, baffles, dampers, and drive assemblies.
 - 3. Air-handling unit internal surfaces and components including mixing box, coil section, air wash systems, spray eliminators, condensate drain pans, humidifiers and dehumidifiers, filters and filter sections, and condensate collectors and drains.
 - 4. Coils and related components.
 - 5. Return-air ducts, dampers, actuators, and turning vanes except in ceiling plenums and mechanical equipment rooms.
 - 6. Supply-air ducts, dampers, actuators, and turning vanes.
 - 7. Dedicated exhaust and ventilation components and makeup air systems.
- E. Mechanical Cleaning Methodology:
 - 1. Clean metal duct systems using mechanical cleaning methods that extract contaminants from within duct systems and remove contaminants from building.
 - 2. Use vacuum-collection devices that are operated continuously during cleaning. Connect vacuum device to downstream end of duct sections so areas being cleaned are under negative pressure.
 - 3. Use mechanical agitation to dislodge debris adhered to interior duct surfaces without damaging integrity of metal ducts, duct liner, or duct accessories.
 - 4. Clean fibrous-glass duct liner with HEPA vacuuming equipment; do not permit duct liner to get wet. Replace fibrous-glass duct liner that is damaged, deteriorated, or delaminated or that has friable material, mold, or fungus growth.
 - 5. Clean coils and coil drain pans according to NADCA 1992. Keep drain pan operational. Rinse coils with clean water to remove latent residues and cleaning materials; comb and straighten fins.
 - 6. Provide drainage and cleanup for wash-down procedures.
 - 7. Antimicrobial Agents and Coatings: Apply EPA-registered antimicrobial agents if fungus is present. Apply antimicrobial agents according to manufacturer's written instructions after removal of surface deposits and debris.

3.10 START UP

A. Air Balance: Comply with requirements of NEBB or AABC

3.11 DUCT SCHEDULE

- A. Fabricate ducts with galvanized sheet steel except as otherwise indicated.
- B. Exhaust Ducts:

- 1. Ducts Connected to Fans Exhausting (ASHRAE 62.1, Class 1 and 2) Air (EF-X):
 - a. Pressure Class: Negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: A if negative pressure, and A if positive pressure.
 - c. SMACNA Leakage Class for Rectangular: 12.
- C. Intermediate Reinforcement:
 - 1. Galvanized-Steel Ducts: Galvanized steel.
- D. Elbow Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards -Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 - a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 - b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 - c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
- E. Branch Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-6, "Branch Connection."
 - a. Rectangular Main to Rectangular Branch: 45-degree entry.

END OF SECTION 233113

SECTION 233416 - CENTRIFUGAL HVAC FANS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Square in-line centrifugal fans.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Construction details, material descriptions, dimensions of individual components and profiles, and finishes for fans.
 - 2. Rated capacities, operating characteristics, and furnished specialties and accessories.
 - 3. Certified fan performance curves with system operating conditions indicated.
 - 4. Certified fan sound-power ratings.
 - 5. Motor ratings and electrical characteristics, plus motor and electrical accessories.
 - 6. Material thickness and finishes, including color charts.
 - 7. Dampers, including housings, linkages, and operators.
- B. Shop Drawings:
 - 1. Include plans, elevations, sections, and attachment details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include diagrams for power, signal, and control wiring.
 - 4. Design Calculations: Calculate requirements for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.
 - 5. Vibration Isolation Base Details: Detail fabrication, including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
- C. Delegated-Design Submittal: For unit hangars and supports indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Design Calculations: Calculate requirements for selecting vibration isolators and seismic restraints and for designing vibration isolation bases.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Fan room layout and relationships between components and adjacent structural and mechanical elements, drawn to scale, and coordinated with each other, using input from installers of the items involved.
- B. Seismic Qualification Data: For fans, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity, and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For centrifugal fans to include in normal operation, emergency operation, and maintenance manuals with replacement parts listing.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Belts: One set(s) for each belt-driven unit.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design vibration isolators and supports.
- B. Seismic Performance: Centrifugal fans shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts when subjected to the seismic forces specified."
 - 2. Component Importance Factor: 1.0.
- C. Capacities and Characteristics:
 - 1. As indicated on drawings.

2.2 SQUARE IN-LINE CENTRIFUGAL FANS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Acme Engineering & Mfg. Corp.
 - 2. Loren Cook Company
 - 3. Penn Barry Ventilation
 - 4. Twin City Blower
 - 5. Greenheck.
- B. Description: Direct- or belt-driven centrifugal cabinet fans.
- C. Construction: Minimum 18 gauge galvanized steel. Internal blower and motor assembly mounted on rubber vibration isolators. Integral duct collars.
- D. Fan Wheels: Steel hub and wheel.
- E. Belt-Driven Assembly: Resiliently mounted to housing, with the follow features:
 - 1. Fan Shaft: Turned, ground, and polished steel; keyed to wheel hub.
 - 2. Shaft Bearings: Permanently lubricated, permanently sealed, self-aligning ball bearings.
 - 3. Pulleys: Cast-iron, adjustable-pitch motor pulley.
- F. Accessories:
 - 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent, factory wired, direct drive fans only.
 - 2. Additional Accessories: As indicated.

2.3 MOTORS

- A. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
- B. Where variable-frequency drives are indicated or scheduled, provide fan motor compatible with variable-frequency drive.

2.4 SOURCE QUALITY CONTROL

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.
- B. AMCA Compliance: Fans shall comply with AMCA 11 and bear the AMCA-Certified Ratings Seal.
- C. Fan Sound Ratings: Comply with AMCA 311 and label fans with the AMCA-Certified Ratings Seal. Sound ratings shall comply with AMCA 301. The fans shall be tested according to AMCA 300.

- D. Fan Performance Ratings: Comply with AMCA 211 and label fans with AMCA-Certified Rating Seal. The fans shall be tested for air performance flow rate, fan pressure, power, fan efficiency, air density, speed of rotation, and fan efficiency according to AMCA 210/ASHRAE 51.
- E. Operating Limits: Classify fans according to AMCA 99.

PART 3 - EXECUTION

3.1 INSTALLATION OF CENTRIFUGAL HVAC FANS

- A. Install centrifugal fans level and plumb.
- B. Disassemble and reassemble units, as required for moving to the final location, according to manufacturer's written instructions.
- C. Lift and support units with manufacturer's designated lifting or supporting points.
- D. Equipment Mounting:
 - 1. Support duct-mounted and other hanging centrifugal fans directly from the building structure, using suitable hanging systems as specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."
 - 2. Comply with requirements for vibration isolation and seismic-control devices specified in Section 230548 "Vibration and Seismic Controls for HVAC."
 - 3. Comply with requirements for vibration isolation devices specified in Section 230548.13 "Vibration Controls for HVAC."
- E. Curb Support, Field Built-Up: Install roof curb on roof structure, level and secure, according to "The NRCA Roofing and Waterproofing Manual," detail "Equipment Support Curb," number "SPF-9" (page 1409) and detail "Equipment Support Curb," number "SPF-9S" (page 1410). Install and secure centrifugal fans on curbs, and coordinate roof penetrations and flashing with roof construction. Secure units to curb support with anchor bolts.
- F. Install units with clearances for service and maintenance.
- G. Label fans according to requirements specified in Section 230553 "Identification for HVAC Piping and Equipment."

3.2 DUCTWORK AND PIPING CONNECTIONS

- A. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Section 230548 "Vibration and Seismic Control for HVAC."
- B. Install ducts adjacent to fans to allow service and maintenance.

3.3 ELECTRICAL CONNECTIONS

- A. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- B. Install electrical devices furnished by manufacturer, but not factory mounted, according to NFPA 70 and NECA 1.
 - 1. Nameplate shall be laminated acrylic or melamine plastic signs, as specified in Section 260553 "Identification for Electrical Systems."
 - 2. Nameplate shall be laminated acrylic or melamine plastic signs with a black background and engraved white letters at least 1/2 inch high.

3.4 CONTROL CONNECTIONS

- A. Install control and electrical power wiring to field-mounted control devices.
- B. Connect control wiring according to Section 260523 "Control-Voltage Electrical Power Cables."

3.5 FIELD QUALITY CONTROL

- A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.
- B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- C. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- D. Perform tests and inspections.
- E. Tests and Inspections:
 - 1. Verify that shipping, blocking, and bracing are removed.
 - 2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
 - 3. Verify that there is adequate maintenance and access space.
 - 4. Verify that cleaning and adjusting are complete.
 - 5. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
 - 6. Adjust belt tension.
 - 7. Adjust damper linkages for proper damper operation.
 - 8. Verify lubrication for bearings and other moving parts.
 - 9. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
 - 10. See Section 230593 "Testing, Adjusting, and Balancing For HVAC" for testing, adjusting, and balancing procedures.

- 11. Remove and replace malfunctioning units and retest as specified above.
- F. Test and adjust controls and safeties. Controls and equipment will be considered defective if they do not pass tests and inspections.
- G. Prepare test and inspection reports.
- 3.6 ADJUSTING
 - A. Adjust damper linkages for proper damper operation.
 - B. Adjust belt tension.
 - C. Comply with requirements of NEBB or AABC for Testing, Adjusting, and Balancing.
 - D. Replace fan and motor pulleys as required to achieve design airflow.
 - E. Lubricate bearings.
- 3.7 DEMONSTRATION
 - A. Train Owner's maintenance personnel to adjust, operate, and maintain centrifugal fans.

END OF SECTION 233416

SECTION 233713.23 - REGISTERS AND GRILLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Fixed blade face registers and grilles.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.

PART 2 - PRODUCTS

2.1 GRILLES

- A. Fixed Blade Face Grille:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Carnes Company.
 - b. Nailor Industries Inc.
 - c. Titus.
 - d. Price.
 - 2. Material: Steel
 - a. Provide with Aluminum face diffusers in all wet applications (toilets, etc.).
 - 3. Finish: Baked enamel, white.
 - 4. Characteristics: See Drawings.

2.2 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate registers and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install registers and grilles level and plumb.
- B. Outlets and Inlets Locations: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.
- C. Install registers and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.2 ADJUSTING

A. After installation, adjust registers and grilles to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION 233713.23

SECTION 238239.19 - WALL AND CEILING UNIT HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes wall and ceiling heaters with propeller fans and electric-resistance heating coils.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include rated capacities, operating characteristics, furnished specialties, and accessories.

B. Shop Drawings:

- 1. Include plans, elevations, sections, and details.
- 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
- 3. Include details of anchorages and attachments to structure and to supported equipment.
- 4. Include equipment schedules to indicate rated capacities, operating characteristics, furnished specialties, and accessories.
- 5. Wiring Diagrams: Power, signal, and control wiring.
- C. Samples: For each exposed product and for each color and texture specified.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wall and ceiling unit heaters to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

WALL AND CEILING UNIT HEATERS

- 1. INDEECO.
- 2. QMark; Marley Engineered Products.
- 3. Reznor HVAC

2.2 DESCRIPTION

- A. Assembly including chassis, electric heating coil, fan, motor, and controls. Comply with UL 2021.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.3 CABINET

- A. Front Panel: Extruded-aluminum bar grille, with removable panels fastened with tamperproof fasteners.
- B. Finish: Baked enamel over baked-on primer with manufacturer's standard color selected by Architect, applied to factory-assembled and -tested wall and ceiling heaters before shipping.
- C. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- D. Surface-Mounted Cabinet Enclosure: Steel with finish to match cabinet.

2.4 COIL

A. Electric-Resistance Heating Coil: Nickel-chromium heating wire, free from expansion noise and 60-Hz hum, embedded in magnesium oxide refractory and sealed in corrosion-resistant metallic sheath. Terminate elements in stainless-steel, machine-staked terminals secured with stainless-steel hardware, and limit controls for high-temperature protection. Provide integral circuit breaker for overcurrent protection.

2.5 FAN AND MOTOR

- A. Fan: Aluminum propeller directly connected to motor.
- B. Motor: Permanently lubricated. Comply with requirements in Section 230513 "Common Motor Requirements for HVAC Equipment."

2.6 CONTROLS

- A. Controls: Unit-mounted thermostat. Low-voltage relay with transformer kit.
- B. Electrical Connection: Factory wire motors and controls for a single field connection with disconnect switch.

2.7 CAPACITIES AND CHARACTERISTICS

1. As specified on drawings.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas to receive wall and ceiling unit heaters for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for electrical connections to verify actual locations before unit-heater installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install wall and ceiling unit heaters to comply with NFPA 90A.
- B. Install wall and ceiling unit heaters level and plumb.
- C. Install wall-mounted thermostats and switch controls in electrical outlet boxes at heights to match lighting controls. Verify location of thermostats and other exposed control sensors with Drawings and room details before installation.
- D. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- E. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

END OF SECTION 238239.19

SECTION 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Identification for conductors.
 - 2. Underground-line warning tape.
 - 3. Warning labels and signs.
 - 4. Equipment identification labels.
 - 5. Arc Flash label per NEC.

1.3 ACTION SUBMITTALS

- A. Product Data: For each electrical identification product indicated.
- B. Arc Flash Hazard Analysis.
- 1.4 QUALITY ASSURANCE
 - A. Comply with NFPA 70.

1.5 COORDINATION

- A. Coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and the Operation and Maintenance Manual; and with those required by codes, standards, and 29 CFR 1910.145. Use consistent designations throughout Project.
- B. Labeling is to be reviewed and approved by the Facilities Project Manager & Electrical Supervisor.
- C. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- D. Coordinate installation of identifying devices with location of access panels and doors.
- E. Install identifying devices before installing acoustical ceilings and similar concealment.

F. Panels require labeling of necessary PPE with potential hazards as a result of Arc Flash Hazard Analysis. The Arc Flash Hazard Analysis shall be performed by the Electrical Contractor.

PART 2 - PRODUCTS

2.1 CONDUCTOR IDENTIFICATION MATERIALS

A. Color-Coding Conductor Tape: Colored, self-adhesive vinyl tape not less than 3 mils (0.08 mm) thick by 1 to 2 inches (25 to 50 mm) wide.

2.2 UNDERGROUND-LINE WARNING TAPE

- A. Tape:
 - 1. Use insert polyethylene plastic ribbon, 6" wide by 4 mils thick. Install continuous tape, 6" to 8" below finish grade, for each exterior underground raceway. Provide trace wire with all underground conduits.
 - 2. Printing on tape shall be permanent and shall not be damaged by burial operations.
 - 3. Tape material and ink shall be chemically inert, and not subject to degrading when exposed to acids, alkalis, and other destructive substances commonly found in soils.
- B. Color and Printing:
 - 1. Comply with ANSI Z535.1 through ANSI Z535.5.
 - 2. Inscriptions for Red-Colored Tapes: ELECTRIC LINE, HIGH VOLTAGE.
 - 3. Inscriptions for Orange-Colored Tapes: TELEPHONE CABLE, COMMUNICATIONS CABLE, OPTICAL FIBER CABLE.

2.3 WARNING LABELS AND SIGNS

- A. Comply with NFPA 70 and 29 CFR 1910.145.
- B. Self-Adhesive Warning Labels: Factory-printed, multicolor, pressure-sensitive adhesive labels, configured for display on front cover, door, or other access to equipment unless otherwise indicated.
- C. Baked-Enamel Warning Signs:
 - 1. Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for application.
 - 2. 1/4-inch (6.4-mm) grommets in corners for mounting.
 - 3. Nominal size, 7 by 10 inches (180 by 250 mm).
- D. Warning label and sign shall include, but are not limited to, the following:
 - 1. Multiple Power Source Warning: "DANGER ELECTRICAL SHOCK HAZARD EQUIPMENT HAS MULTIPLE POWER SOURCES."

2.4 EQUIPMENT IDENTIFICATION LABELS

- A. Normal Power Equipment: Self-Adhesive, Engraved, Laminated Acrylic or Melamine Label: Adhesive backed, with white letters on a black background. Minimum letter height shall be 3/8 inch (10 mm).
- B. Emergency Power Equipment: Self-Adhesive, Engraved, Laminated Acrylic or Melamine Label: Adhesive backed, with white letters on a red background. Minimum letter height shall be 3/8 inch (10 mm).

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Verify identity of each item before installing identification products.
- B. If banks of switching are installed that control various systems (i.e. lighting, AV, and projection screen, etc.) or various spaces (i.e. classroom and corridor, etc.) labeling with 1/8" black letters indicating function of each switch is required.
- C. Location: Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment.
- D. Self-Adhesive Identification Products: Clean surfaces before application, using materials and methods recommended by manufacturer of identification device.
- E. Attach signs and plastic labels that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
- F. Underground-Line Warning Tape: During backfilling of trenches install continuous underground-line warning tape directly above line at 6 to 8 inches (150 to 200 mm) below finished grade. Use multiple tapes where width of multiple lines installed in a common trench or concrete envelope exceeds 16 inches (400 mm) overall.

3.2 IDENTIFICATION SCHEDULE

- A. Accessible Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive vinyl labels with the wiring system legend and system voltage. System legends shall be as follows:
 - 1. Emergency Power: White letters on a red background.
 - 2. Power: White letters on a black background.
- B. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use color-coding conductor tape to identify the phase.
 - 1. Color-Coding for Phase and Voltage Level Identification, 600 V or Less: Use colors listed below for ungrounded service, feeder, and branch-circuit conductors.

- a. Color shall be factory applied or field applied for sizes larger than No. 8 AWG, if authorities having jurisdiction permit.
- b. Colors for 208/120-V Circuits:
 - 1) Phase A: Black.
 - 2) Phase B: Red.
 - 3) Phase C: Blue.
 - 4) Neutral: White
 - 5) Ground: Green
- c. Colors for 480/277-V Circuits:
 - 1) Phase A: Brown.
 - 2) Phase B: Orange.
 - 3) Phase C: Yellow.
 - 4) Neutral: Gray
 - 5) Ground: Green
- d. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches (150 mm) from terminal points and in boxes where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding. Locate bands to avoid obscuring factory cable markings.
- C. Equipment Identification Labels: On each unit of equipment, install unique designation label that is consistent with wiring diagrams, schedules, and the Operation and Maintenance Manual. Apply labels to disconnect switches and protection equipment, central or master units, control panels, control stations, terminal cabinets, and racks of each system. Systems include power, lighting, control, communication, signal, monitoring, and alarm systems unless equipment is provided with its own identification. Install engraved label on the inside of flush panels, visible when the door is open.
 - 1. Labeling Instructions:
 - a. Indoor Equipment: Engraved, laminated acrylic or melamine label, black with white core for normal power and red with white letters for emergency power. Unless otherwise indicated, provide a single line of text with 1/2-inch- (13-mm-) high letters on 1-1/2-inch- (38-mm-) high label; where two lines of text are required, use labels 2 inches (50 mm) high.
 - b. Outdoor Equipment: Engraved, laminated acrylic or melamine label.
 - 2. Equipment to Be Engraved Labeled:
 - a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer, with separate columns for odd and even numbers, using final building room numbers and identifications. Panelboard identification shall be engraved, laminated acrylic or melamine label. Panelboard label shall identify panel, voltage, and electrical source. Each electrical panel ID should start with number where "2" will indicate 208/120V system and "4" will indicate 480/277V system.
 - b. Enclosures and electrical cabinets.
 - c. Access doors and panels for concealed electrical items.

- d. Emergency system boxes and enclosures.
- e. Enclosed switches.
- f. Enclosed circuit breakers.
- g. Enclosed controllers.
- h. Variable-speed controllers.
- i. Push-button stations.
- j. Power transfer equipment.
- k. Contactors.
- 1. Remote-controlled switches, dimmer modules, and control devices.
- m. Power-generating units.
- n. Monitoring and control equipment.
- o. UPS equipment.
- 3. On the cover of junction and pull boxes, use label, or legibly write with indelible ink, the panel number, circuit number and voltage for each box.
- 4. On the back of wiring devices including power receptacles and switches, use label, or legibly write with indelible ink, the panel number, circuit number and voltage for each wiring device.

END OF SECTION 260553

SECTION 262416 - PANELBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Distribution panelboards.
 - 2. Panelboards.
 - 3. Built-in sub-metering per one-line diagram on drawing E5.1.

1.3 DEFINITIONS

A. SPD: Surge protection device.

1.4 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Panelboards shall withstand the effects of earthquake motions determined according to SEI/ASCE 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of panelboard, switching and overcurrent protective device, transient voltage suppression device, accessory, and component indicated. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
- B. Shop Drawings: For each panelboard and related equipment.
 - 1. Include dimensioned plans, elevations, sections, and details. Show tabulations of installed devices, equipment features, and ratings.
 - 2. Detail enclosure types and details for types other than NEMA 250, Type 1.
 - 3. Detail bus configuration, current, and voltage ratings.
 - 4. Short-circuit current rating and arc flash of panelboards and overcurrent protective devices.

1.6 QUALITY ASSURANCE

- A. Comply with NEMA PB 1.
- B. Comply with NFPA 70.

1.7 DELIVERY, STORAGE, AND HANDLING

- A. Remove loose packing and flammable materials from inside panelboards; install temporary electric heating (250 W per panelboard) to prevent condensation.
- B. Handle and prepare panelboards for installation according to NEMA PB 1.

1.8 PROJECT CONDITIONS

- A. Environmental Limitations:
 - 1. Do not deliver or install panelboards until spaces are enclosed and weathertight, wet work in spaces is complete and dry, work above panelboards is complete, and temporary HVAC system is operating and maintaining ambient temperature and humidity conditions at occupancy levels during the remainder of the construction period.
 - 2. Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - a. Ambient Temperature: Not exceeding 23 deg F (minus 5 deg C) to plus 104 deg F (plus 40 deg C).
 - b. Altitude: Not exceeding 6600 feet (2000 m).
- B. Service Conditions: NEMA PB 1, usual service conditions, as follows:
 - 1. Ambient temperatures within limits specified.
 - 2. Altitude not exceeding 6600 feet (2000 m).

1.9 COORDINATION

- A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Coordinate sizes and locations of concrete bases with actual equipment provided. Cast anchorbolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.

1.10 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace transient voltage suppression devices that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PANELBOARDS

- A. Fabricate and test panelboards according to IEEE 344 to withstand seismic forces.
- B. Enclosures: Surface mounted cabinets.
 - 1. Rated for environmental conditions at installed location.
 - a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 - 2. Front: Secured to box with concealed trim clamps. For surface-mounted fronts, match box dimensions.
 - 3. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover.
 - 4. Directory Card: Inside panelboard door, mounted in transparent card holder.
- C. Phase, Neutral, and Ground Buses:
 - 1. Material: Tin-plated aluminum.
 - 2. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.
- D. Conductor Connectors: Suitable for use with conductor material and sizes.
 - 1. Material: Tin-plated aluminum.
 - 2. Main and Neutral Lugs: Compression.
 - 3. Ground Lugs and Bus-Configured Terminators: Compression type.
 - 4. Feed-Through Lugs: Compression type, suitable for use with conductor material. Locate at opposite end of bus from incoming lugs or main device.
 - 5. Subfeed (Double) Lugs: Compression type suitable for use with conductor material. Locate at same end of bus as incoming lugs or main device.
- E. Future Devices: Mounting brackets, bus connections, filler plates, and necessary appurtenances required for future installation of devices.
- F. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current available at terminals.

2.2 PANELBOARDS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 - 2. General Electric.
 - 3. Siemens Energy & Automation, Inc.
 - 4. Square D; a brand of Schneider Electric.
- B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.
- C. Mains: Circuit breaker or lugs only as scheduled.
- D. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.
- E. Doors: Double hinge cover, concealed hinges; secured with flush latch with tumbler lock; keyed alike.

2.3 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 - 2. General Electric.
 - 3. Siemens Energy & Automation, Inc.
 - 4. Square D; a brand of Schneider Electric.
- B. Molded-Case Circuit Breaker (MCCB): Comply with UL 489, with interrupting capacity to meet available fault currents.
 - 1. Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads, and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.
 - 2. Molded-Case Circuit-Breaker (MCCB) Features and Accessories:
 - a. Standard frame sizes, trip ratings, and number of poles.
 - b. Lugs: Compression style, suitable for number, size, trip ratings, and conductor materials.
 - c. Ground-Fault Protection: Integrally mounted relay and trip unit with adjustable pickup and time-delay settings, push-to-test feature, and ground-fault indicator.
 - d. Shunt Trip: 120-V trip coil energized from separate circuit, set to trip at 55 percent of rated voltage.
 - e. Handle Padlocking Device: Fixed attachment, for locking circuit-breaker handle in on or off position.
 - f. Handle Clamp: Loose attachment, for holding circuit-breaker handle in on position.

- C. Panelboard Suppressors: Integrally mounted, wired-in, solid-state, parallel-connected, with sinewave tracking suppression and filtering modules, UL 1449, second edition, short-circuit current rating matching or exceeding the panelboard short-circuit rating.
 - 1. Accessories:
 - a. Fuses rated at 200-kA interrupting capacity.
 - b. Fabrication using bolted compression lugs for internal wiring.
 - c. Integral disconnect switch.
 - d. Redundant suppression circuits.
 - e. Redundant replaceable modules.
 - f. Arrangement with wire connections to phase buses, neutral bus, and ground bus.
 - g. LED indicator lights for power and protection status.
 - h. Audible alarm, with silencing switch, to indicate when protection has failed.
 - i. Form-C contacts rated at 5 A and 250-V ac, one normally open and one normally closed, for remote monitoring of system operation.
 - j. Four-digit, transient-event counter set to totalize transient surges.
 - 2. Peak Single-Impulse Surge Current Rating: 80kA per mode/160kA per phase.
 - 3. Minimum Single-Impulse Current Ratings, Using 8-by-20-Mic.Sec. Waveform:
 - a. Line to Neutral: 70,000 A.
 - b. Line to Ground: 70,000 A.
 - c. Neutral to Ground: 50,000 A.
 - 4. Withstand Capabilities: 12,000 IEEE C62.41, Category C3 (10 kA), 8-by-20-mic.sec. surges with less than 5 percent change in clamping voltage.
- D. Protection modes and UL 1449 SVR for grounded wye circuits with 480Y/277-V, three-phase, four-wire circuits shall be as follows:
 - 1. Line to Neutral: 800 V for 480Y/277.
 - 2. Line to Ground: 800 V for 480Y/277.
 - 3. Neutral to Ground: 800 V for 480Y/277.
- E. Protection modes and UL 1449 SVR for Grounded Wye Circuits with 208Y/120-V, Three-Phase, Four-Wire Circuits:
 - 1. Line to Neutral: 400 V for 208Y/120.
 - 2. Line to Ground: 400 V for 208Y/120.
 - 3. Neutral to Ground: 400 V for 208Y/120.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Receive, inspect, handle, and store panelboards according to NECA 407.

3.2 INSTALLATION

- A. Install panelboards and accessories according to NECA 407.
- B. Mount top of trim 90 inches (2286 mm) above finished floor unless otherwise indicated.
- C. Mount panelboard cabinet plumb and rigid without distortion of box. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.
- D. Install overcurrent protective devices and controllers not already factory installed.
- E. Install filler plates in unused spaces.
- F. Arrange conductors in gutters into groups and bundle and wrap with wire ties after completing load balancing.
- G. Comply with NECA 1.
- H. Provide 20% or more spare capacity for future expansion.
- I. Provide two additional ³/₄" and two additional 1" spare conduits from each panelboard to space above for a minimum of 5'-0" or and as applicable below panelboard for future expansion.

3.3 IDENTIFICATION

- A. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs complying with Section 260553 "Identification for Electrical Systems."
- B. Create a directory to indicate installed circuit loads after balancing panelboard loads; incorporate Owner's final room designations. Obtain approval before installing. Use a computer or typewriter to create directory; handwritten directories are not acceptable.
- C. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
- D. Arc Flash label per NEC.

3.4 FIELD QUALITY CONTROL

- A. Tests and Inspections:
 - 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
- B. Panelboards will be considered defective if they do not pass tests and inspections.

END OF SECTION 262416

PANELBOARDS

SECTION 262726 - WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Receptacles, receptacles with integral GFCI, and associated device plates.
 - 2. Snap switches and wall-box dimmers.

1.3 DEFINITIONS

- A. EMI: Electromagnetic interference.
- B. GFCI: Ground-fault circuit interrupter.
- C. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
- D. RFI: Radio-frequency interference.
- E. SPD: Surge protection device.
- F. UTP: Unshielded twisted pair.

1.4 ADMINISTRATIVE REQUIREMENTS

- A. Coordination:
 - 1. Receptacles for Owner-Furnished Equipment: Match plug configurations.
 - 2. Cord and Plug Sets: Match equipment requirements.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers' Names: Shortened versions (shown in parentheses) of the following manufacturers' names are used in other Part 2 articles:
 - 1. Hubbell Incorporated; Wiring Device-Kellems (Hubbell).
 - 2. Leviton Mfg. Company Inc. (Leviton).
 - 3. Pass & Seymour/Legrand (Pass & Seymour).
- B. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.

2.2 GENERAL WIRING-DEVICE REQUIREMENTS

- A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NFPA 70.

2.3 STRAIGHT-BLADE RECEPTACLES

- A. Convenience Receptacles, 125 V, 20 A: Comply with NEMA WD 1, NEMA WD 6 Configuration 5-20R, UL 498, and FS W-C-596.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Hubbell; HBL5351 (single), HBL5352 (duplex).
 - b. Leviton; 5891 (single), 5352 (duplex).
 - c. Pass & Seymour; 5361 (single), 5362 (duplex).

2.4 GFCI RECEPTACLES

- A. General Description:
 - 1. Straight blade, non-feed-through type.
 - 2. Comply with NEMA WD 1, NEMA WD 6, UL 498, UL 943 Class A, and FS W-C-596.
 - 3. Include indicator light that shows when the GFCI has malfunctioned and no longer provides proper GFCI protection.
- B. Duplex GFCI Convenience Receptacles, 125 V, 20 A:
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Hubbell; GFR5352L.

- b. Pass & Seymour; 2095.
- c. Leviton; 7590.
- 2.5 TOGGLE SWITCHES
 - A. Comply with NEMA WD 1, UL 20, and FS W-S-896.
 - B. Switches, 120 V, 20 A:
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Single Pole:
 - 1) Hubbell; HBL1221.
 - 2) Leviton; 1221-2.
 - 3) Pass & Seymour; CSB20AC1.

2.6 WALL PLATES

- A. Single and combination types shall match corresponding wiring devices.
 - 1. Plate-Securing Screws: Metal with head color to match plate finish.
 - 2. Material for Finished Spaces: Satin-finished type 302 stainless steel, beveled edge.
 - 3. Material for Unfinished Spaces: Galvanized steel.
 - 4. Material for Damp Locations: Thermoplastic with spring-loaded lift cover, and listed and labeled for use in wet and damp locations.

2.7 FINISHES

- A. Device Color:
 - 1. Wiring Devices Connected to Normal Power System Panelboards: Gray unless otherwise indicated or required by NFPA 70 or device listing.
 - 2. Wiring Devices Connected to Life Safety Generator Power Panelboards: Red.
 - 3. Wiring Devices Connected to Stand-By Generator Power Panelboards: Blue.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.
- B. Coordination with Other Trades:

- 1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes and do not cut holes for boxes with routers that are guided by riding against outside of boxes.
- 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
- 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
- 4. Install wiring devices after all wall preparation, including painting, is complete.
- C. Conductors:
 - 1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.
 - 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
 - 3. The length of free conductors at outlets for devices shall meet provisions of NFPA 70, Article 300, without pigtails.
- D. Device Installation:
 - 1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.
 - 2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
 - 3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
 - 4. Connect devices to branch circuits using pigtails that are not less than 6 inches (152 mm) in length.
 - 5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
 - 6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
 - 7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
 - 8. Tighten unused terminal screws on the device.
 - 9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.
- E. Receptacle Orientation:
 - 1. Install ground pin of vertically mounted receptacles down, and on horizontally mounted receptacles to the right.
- F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.
- G. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.

3.2 IDENTIFICATION

- A. Comply with Section 260553 "Identification for Electrical Systems."
- B. Identify each receptacle and switch. On the back of finish plate, use a label, or legibly write indelible ink, the panel number, circuit number and voltage for wiring device.

END OF SECTION 262726

SECTION 262813 - FUSES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Cartridge fuses rated 600-V ac and less for use in enclosed switches and enclosed controllers.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
 - 1. Dimensions and manufacturer's technical data on features, performance, electrical characteristics, and ratings.

1.4 QUALITY ASSURANCE

- A. Source Limitations: Obtain fuses, for use within a specific product or circuit, from single source from single manufacturer.
- B. Comply with NEMA FU 1 for cartridge fuses.
- C. Comply with NFPA 70.

1.5 COORDINATION

A. Coordinate fuse ratings with utilization equipment nameplate limitations of maximum fuse size and with system short-circuit current levels.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:

- 1. Cooper Bussmann, Inc.
- 2. Ferraz Shawmut, Inc.
- 3. Littelfuse, Inc.

2.2 CARTRIDGE FUSES

A. Characteristics: NEMA FU 1, nonrenewable cartridge fuses with voltage ratings consistent with circuit voltages.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine fuses before installation. Reject fuses that are moisture damaged or physically damaged.
- B. Examine holders to receive fuses for compliance with installation tolerances and other conditions affecting performance, such as rejection features.
- C. Examine utilization equipment nameplates and installation instructions. Install fuses of sizes and with characteristics appropriate for each piece of equipment.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 FUSE APPLICATIONS

- A. Cartridge Fuses:
 - 1. Motor Branch Circuits: Class RK1, time delay.
 - 2. Other Branch Circuits: Class RK5, time delay.

3.3 INSTALLATION

A. Install fuses in fusible devices. Arrange fuses so rating information is readable without removing fuse.

3.4 IDENTIFICATION

A. Install labels complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems" and indicating fuse replacement information on inside door of each fused switch and adjacent to each fuse block, socket, and holder.

END OF SECTION 262813

SECTION 262816 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Fusible switches.
 - 2. Nonfusible switches.
 - 3. Molded-case circuit breakers (MCCBs).
 - 4. Enclosures.

1.3 DEFINITIONS

- A. NC: Normally closed.
- B. NO: Normally open.
- C. SPDT: Single pole, double throw.

1.4 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Enclosed switches and circuit breakers shall withstand the effects of earthquake motions determined according to ASCE/SEI 7.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified."

1.5 ACTION SUBMITTALS

A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated.

1.6 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

B. Comply with NFPA 70.

1.7 COORDINATION

A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

PART 2 - PRODUCTS

2.1 FUSIBLE SWITCHES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 - 2. General Electric.
 - 3. Siemens Energy & Automation, Inc.
 - 4. Square D; a brand of Schneider Electric.
- B. Type HD, Heavy Duty, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate specified fuses, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.
- C. Accessories:
 - 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 - 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 - 3. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
 - 4. Lugs: Suitable for number, size, and conductor material.

2.2 NONFUSIBLE SWITCHES

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 - 2. General Electric.
 - 3. Siemens Energy & Automation, Inc.
 - 4. Square D; a brand of Schneider Electric.
- B. Type HD, Heavy Duty, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

- C. Accessories:
 - 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
 - 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
 - 3. Lugs: Suitable for number, size, and conductor material.

2.3 MOLDED-CASE CIRCUIT BREAKERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Eaton Electrical Inc.; Cutler-Hammer Business Unit.
 - 2. General Electric.
 - 3. Siemens Energy & Automation, Inc.
 - 4. Square D; a brand of Schneider Electric.
- B. General Requirements: Comply with UL 489, NEMA AB 1, and NEMA AB 3, with interrupting capacity to comply with available fault currents.
- C. Thermal-Magnetic Circuit Breakers: Inverse time-current element for low-level overloads and instantaneous magnetic trip element for short circuits. Adjustable magnetic trip setting for circuit-breaker frame sizes 250 A and larger.

2.4 ENCLOSURES

- A. Enclosed Switches and Circuit Breakers: NEMA AB 1, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.
 - 1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
 - 2. Outdoor Locations: NEMA 250, Type 3R.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.

- B. Comply with mounting and anchoring requirements specified in Section 260548 "Vibration and Seismic Controls for Electrical Systems."
- C. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
- D. Install fuses in fusible devices.
- E. Comply with NECA 1.

3.3 IDENTIFICATION

- A. Comply with requirements in Section 260553 "Identification for Electrical Systems."
 - 1. Label each enclosure with engraved metal or laminated-plastic nameplate.

END OF SECTION 262816

SECTION 265100 - INTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Interior solid-state luminaires that use LED technology.
 - 2. Exit signs.
 - 3. Lighting fixture supports.
- B. Related Sections:
 - 1. Section 260923 "Lighting Control Devices" for automatic control of lighting, including lighting control units, photoelectric sensors, and occupancy sensors.

1.3 DEFINITIONS

- A. CCT: Correlated color temperature.
- B. CRI: Color-rendering index.
- C. LER: Luminaire efficacy rating.
- D. Lumen: Measured output of lamp and luminaire, or both.
- E. Luminaire: Complete lighting fixture, including ballast housing if provided.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of lighting fixture, arranged in order of fixture designation. Include data on features, accessories, finishes, and the following:
 - 1. Physical description of lighting fixture including dimensions.
 - 2. Driver.
 - 3. Energy-efficiency data.
 - 4. Life, output (lumens, CCT, and CRI), and energy-efficiency data for lamps.
 - 5. Photometric data and adjustment factors based on laboratory tests, complying with IESNA Lighting Measurements Testing & Calculation Guides, of each lighting fixture

type. The adjustment factors shall be for lamps, ballasts, and accessories identical to those indicated for the lighting fixture as applied in this Project.

- a. Testing Agency Certified Data: For indicated fixtures, photometric data shall be certified by a qualified independent testing agency. Photometric data for remaining fixtures shall be certified by manufacturer.
- B. Installation instructions.

1.5 QUALITY ASSURANCE

- A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturer's laboratory that is accredited under the NVLAP for Energy Efficient Lighting Products.
- B. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.7, accredited under the NVLAP for Energy Efficient Lighting Products, and complying with the applicable IES testing standards.
- C. Provide luminaires from a single manufacturer for each luminaire type.
- D. Each luminaire type shall be binned within a three-step MacAdam Ellipse to ensure color consistency among luminaires.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering before shipping.

1.7 COORDINATION

A. Coordinate layout and installation of lighting fixtures and suspension system with other construction that penetrates ceilings or is supported by them, including HVAC equipment, fire-suppression system, and partition assemblies.

1.8 WARRANTY

- A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.
- B. Warranty Period: Five year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Products: Subject to compliance with requirements, provide one of the products indicated on Drawings or a prior approved equal.

2.2 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: Luminaires shall withstand the effects of earthquake motions determined according to ASCE/SEI 7
- B. Seismic Performance: Luminaires and lamps shall be labeled vibration and shock resistant.
 - 1. The term "withstand" means "the luminaire will remain in place without separation of any parts when subjected to the seismic forces specified and the luminaire will be fully operational during and after the seismic event."

2.3 LUMINAIRE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. NRTL Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by an NRTL.
- C. FM Global Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM Global.
- D. Recessed Fixtures: Comply with NEMA LE 4.
- E. Bulb shape complying with ANSI C79.1.
- F. Lamp base complying with ANSI C81.61.
- G. CRI of minimum of 80. CCT variable or as called out on fixture schedule.
- H. Rated lamp life of 50,000 hours.
- I. Lamps dimmable from 100 percent to 10 percent of maximum light output.
- J. Internal driver.
- K. Nominal Operating Voltage: 120 V ac.
 - 1. Lens Thickness: At least 0.125 inch (3.175 mm) minimum unless otherwise indicated.

2.4 MATERIALS

- A. Metal Parts:
 - 1. Free of burrs and sharp corners and edges.
 - 2. Sheet metal components shall be steel unless otherwise indicated.
 - 3. Form and support to prevent warping and sagging.
- B. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.
- C. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps. Locate labels where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.
 - 1. Label shall include the following lamp characteristics:
 - a. "USE ONLY" and include specific lamp type.
 - b. Lamp diameter, shape, size, wattage, and coating.
 - c. CCT and CRI for all luminaires.

2.5 METAL FINISHES

A. Variations in finishes are unacceptable in the same piece. Variations in finishes of adjoining components are acceptable if they are within the range of approved Samples and if they can be and are assembled or installed to minimize contrast.

2.6 LUMINAIRE FIXTURE SUPPORT COMPONENTS

- A. Single-Stem Hangers: 1/2-inch (13-mm) steel tubing with swivel ball fittings and ceiling canopy. Finish same as luminaire.
- B. Wires: ASTM A 641/A 641 M, Class 3, soft temper, zinc-coated steel, 12 gage (2.68 mm).
- C. Rod Hangers: 3/16-inch (5-mm) minimum diameter, cadmium-plated, threaded steel rod.
- D. Hook Hangers: Integrated assembly matched to luminaire, line voltage, and equipment with threaded attachment, cord, and locking-type plug.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.

B. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before fixture installation. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 EXIT SIGNS

- A. General Requirements for Exit Signs: Comply with UL 924; for sign colors, visibility, luminance, and lettering size, comply with authorities having jurisdiction.
- B. Internally Lighted Signs:
 - 1. Lamps for AC Operation: LEDs, 50,000 hours minimum rated lamp life.

3.3 TEMPORARY LIGHTING

A. If approved by the Architect, use selected permanent luminaires for temporary lighting. When construction is sufficiently complete, clean luminaires used for temporary lighting and install new lamps.

PART 4 - EXECUTION

4.1 INSTALLATION

- A. Comply with NECA 1.
- B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.
- C. Install per manufacturer's requirements.
- D. Install lamps in each luminaire.
- E. Supports:
 - 1. Sized and rated for luminaire weight.
 - 2. Able to maintain luminaire position after cleaning and relamping.
 - 3. Provide support for luminaire without causing deflection of ceiling or wall.
 - 4. Luminaire mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and vertical force of 400 percent of luminaire weight.
- F. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for wiring connections.

4.2 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

4.3 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
 - 2. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.
- B. Luminaire will be considered defective if it does not pass operation tests and inspections.
- C. Prepare test and inspection reports.

4.4 STARTUP SERVICE

- A. Comply with requirements for startup specified in Section 260943.23 "Relay-Based Lighting Controls."
- B. Burn-in all lamps that require specific aging period to operate properly, prior to occupancy by Owner. Burn-in LED fixtures intended to be dimmed, for at least 100 hours at full voltage.

END OF SECTION 265100

SECTION 265600 - EXTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Exterior luminaires with lamps and ballasts.
 - 2. Luminaire-mounted photoelectric relays.
 - 3. Luminaire lowering devices.
- B. Related Sections:
 - 1. Section 265100 "Interior Lighting" for exterior luminaires normally mounted on exterior surfaces of buildings.

1.3 DEFINITIONS

- A. CCT: Correlated color temperature.
- B. CRI: Color-rendering index.
- C. LER: Luminaire efficacy rating.
- D. Luminaire: Complete lighting fixture, including ballast housing if provided.
- E. Pole: Luminaire support structure, including tower used for large area illumination.
- F. Standard: Same definition as "Pole" above.

1.4 STRUCTURAL ANALYSIS CRITERIA FOR POLE SELECTION

- A. Dead Load: Weight of luminaire and its horizontal and vertical supports, lowering devices, and supporting structure, applied as stated in AASHTO LTS-4-M.
- B. Live Load: Single load of 500 lbf (2224 N), distributed as stated in AASHTO LTS-4-M.
- C. Ice Load: Load of 3 lbf/sq. ft. (145 Pa), applied as stated in AASHTO LTS-4-M Ice Load Map.

- D. Wind Load: Pressure of wind on pole and luminaire and banners and banner arms, calculated and applied as stated in AASHTO LTS-4-M.
 - 1. Basic wind speed for calculating wind load for poles exceeding 49.2 feet (15 m) in height is 100 mph (45 m/s).
 - a. Wind Importance Factor: 1.0.
 - b. Minimum Design Life: 50 years.
 - c. Velocity Conversion Factors: 1.0.
 - 2. Basic wind speed for calculating wind load for poles 50 feet (15 m) high or less is 100 mph (45 m/s).
 - a. Wind Importance Factor: 1.0.
 - b. Minimum Design Life: 25 years.
 - c. Velocity Conversion Factors: 1.0.

1.5 ACTION SUBMITTALS

- A. Product Data: For each luminaire, pole, and support component, arranged in order of lighting unit designation. Include data on features, accessories, finishes, and the following:
 - 1. Physical description of luminaire, including materials, dimensions, effective projected area, and verification of indicated parameters.
 - 2. Details of attaching luminaires and accessories.
 - 3. Details of installation and construction.
 - 4. Luminaire materials.
 - 5. Photometric data based on laboratory tests of each luminaire type, complete with indicated lamps, ballasts, and accessories.
 - a. Testing Agency Certified Data: For indicated luminaires, photometric data shall be certified by a qualified independent testing agency. Photometric data for remaining luminaires shall be certified by manufacturer.
 - 6. Photoelectric relays.
 - 7. Ballasts, including energy-efficiency data.
 - 8. Lamps, including life, output, CCT, CRI, lumens, and energy-efficiency data.
 - 9. Materials, dimensions, and finishes of poles.
 - 10. Means of attaching luminaires to supports, and indication that attachment is suitable for components involved.
- B. Shop Drawings: Include plans, elevations, sections, details, and attachments to other work.
 - 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Lamps: One for every 100 of each type and rating installed. Furnish at least one of each type. None required for LEDs.

1.7 QUALITY ASSURANCE

- A. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Comply with IEEE C2, "National Electrical Safety Code."
- D. Comply with NFPA 70.

1.8 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace products that fail in materials or workmanship; that corrode; or that fade, stain, perforate, erode, or chalk due to effects of weather or solar radiation within specified warranty period. Manufacturer may exclude lightning damage, hail damage, vandalism, abuse, or unauthorized repairs or alterations from special warranty coverage.
 - 1. Warranty Period for Luminaires:
 - 2. Warranty Period for Metal Corrosion: Five years
 - 3. Warranty Period for Color Retention: Five years

PART 2 - PRODUCTS

2.1 MANUFACTURERS

A. Products: Subject to compliance with requirements, provide one of the products indicated on Drawings or a prior approved equal.

2.2 GENERAL REQUIREMENTS FOR LUMINAIRES

- A. Luminaires shall comply with UL 1598 and be listed and labeled for installation in wet locations by an NRTL acceptable to authorities having jurisdiction.
 - 1. LER Tests Incandescent Fixtures: Where LER is specified, test according to NEMA LE 5A.

- 2. LER Tests Fluorescent Fixtures: Where LER is specified, test according to NEMA LE 5 and NEMA LE 5A as applicable.
- 3. LER Tests HID Fixtures: Where LER is specified, test according to NEMA LE 5B.
- B. Lateral Light Distribution Patterns: Comply with IESNA RP-8 for parameters of lateral light distribution patterns indicated for luminaires.
- C. Metal Parts: Free of burrs and sharp corners and edges.
- D. Sheet Metal Components: Corrosion-resistant aluminum unless otherwise indicated. Form and support to prevent warping and sagging.
- E. Housings: Rigidly formed, weather- and light-tight enclosures that will not warp, sag, or deform in use. Provide filter/breather for enclosed luminaires.
- F. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position. Doors shall be removable for cleaning or replacing lenses. Designed to disconnect ballast when door opens.
- G. Exposed Hardware Material: Stainless steel.
- H. Plastic Parts: High resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
- I. Light Shields: Metal baffles, factory installed and field adjustable, arranged to block light distribution to indicated portion of normally illuminated area or field. Shields for LED fixtures shall be integrated into the individual LED optics.
- J. Reflecting surfaces shall have minimum reflectance as follows unless otherwise indicated:
 - 1. White Surfaces: 85 percent.
 - 2. Specular Surfaces: 83 percent.
 - 3. Diffusing Specular Surfaces: 75 percent.
- K. Lenses and Refractors Gaskets: Use heat- and aging-resistant resilient gaskets to seal and cushion lenses and refractors in luminaire doors.
- L. Luminaire Finish: Manufacturer's standard paint applied to factory-assembled and -tested luminaire before shipping. Where indicated, match finish process and color of pole or support materials.
- M. Factory-Applied Finish for Steel Luminaires: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
 - 1. Surface Preparation: Clean surfaces to comply with SSPC-SP 1, "Solvent Cleaning," to remove dirt, oil, grease, and other contaminants that could impair paint bond. Grind welds and polish surfaces to a smooth, even finish. Remove mill scale and rust, if

present, from uncoated steel, complying with SSPC-SP 5/NACE No. 1, "White Metal Blast Cleaning," or SSPC-SP 8, "Pickling."

- 2. Exterior Surfaces: Manufacturer's standard finish consisting of one or more coats of primer and two finish coats of high-gloss, high-build polyurethane enamel.
 - a. Color: As selected from manufacturer's standard catalog of colors.
- N. Factory-Applied Finish for Aluminum Luminaires: Comply with NAAMM's "Metal Finishes Manual for Architectural and Metal Products" for recommendations for applying and designating finishes.
 - 1. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.
 - 2. Natural Satin Finish: Provide fine, directional, medium satin polish (AA-M32); buff complying with AA-M20; and seal aluminum surfaces with clear, hard-coat wax.
- O. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps and ballasts. Labels shall be located where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.
 - 1. Label shall include the following lamp and ballast characteristics:
 - a. "USES ONLY" and include specific lamp type.
 - b. CCT and CRI for all luminaires.

2.3 LED SYSTEMS

- A. The LED module itself and all its components must not be subjected to mechanical stress.
- B. Assembly must not damage or destroy conducting patches on the circuit board.
- C. Installation of LED modules (with power supplies) shall adhere to all applicable electrical and safety standards.
- D. Correct electrical polarity shall be clearly identified.
- E. LED module must be protected from unbalanced voltage drop, and/or overload.
- F. Ensure that the power supply is of adequate power to operate the total load.
- G. Utilized ESD precautions when installing the module.
- H. Install system according to the manufacturer's heat sinking parameters.
- I. For applications involving exposure to humidity and dust, the module shall be protected by a fixture or housing with a suitable protection glass. The module shall be protected against condensation water by treatment with an appropriate circuit board conformal coating. The conformal coating should have the following features:
 - 1. Optical transparency.
 - 2. UV resistance.

- 3. Thermal expansion properties matching those of the module.
- 4. Low permeability of steam for all climate conditions.
- 5. Resistance against corrosive environments.
- J. The LED module shall be operated with an electronically stabilized power supply including protection against short circuits, overload, and overheating.
- K. All LED products shall have a UL listed label. Unlicensed products are not acceptable.

2.4 LUMINAIRE INSTALLATION

- A. Install lamps in each luminaire.
- B. Fasten luminaire to indicated structural supports.
 - 1. Use fastening methods and materials selected to resist seismic forces defined for the application and approved by manufacturer.

2.5 CORROSION PREVENTION

- A. Aluminum: Do not use in contact with earth or concrete. When in direct contact with a dissimilar metal, protect aluminum by insulating fittings or treatment.
- B. Steel Conduits: In concrete foundations, wrap conduit with 0.010-inch- (0.254-mm-) thick, pipe-wrapping plastic tape applied with a 50 percent overlap.

2.6 FIELD QUALITY CONTROL

- A. Inspect each installed fixture for damage. Replace damaged fixtures and components.
- B. Illumination Observations: Verify normal operation of lighting units after installing luminaires and energizing circuits with normal power source.
- C. Prepare a written report of tests, inspections, observations, and verifications indicating and interpreting results. If adjustments are made to lighting system, retest to demonstrate compliance with standards.

END OF SECTION 265600

SECTION 311000 – SITE CLEARING

PART 1 - GENERAL

1.1 SUMMARY

- A. Section Includes:
 - 1. Protecting existing vegetation to remain.
 - 2. Removing existing vegetation.
 - 3. Clearing and grubbing.
 - 4. Stripping and stockpiling topsoil.
 - 5. Stripping and stockpiling rock.
 - 6. Removing above- and below-grade site improvements.
 - 7. Disconnecting, capping or sealing, and removing site utilities.

1.2 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Related Sections
 - 1. Section 312000 Earth Moving
 - 2. Section 312500 Erosion and Sediment Control

1.3 DEFINITIONS

- A. Subsoil: Soil beneath the level of subgrade; soil beneath the topsoil layers of a naturally occurring soil profile, typified by less than 1 percent organic matter and few soil organisms.
- B. Surface Soil: Soil that is present at the top layer of the existing soil profile. In undisturbed areas, surface soil is typically called "topsoil," but in disturbed areas such as urban environments, the surface soil can be subsoil.
- C. Topsoil: Top layer of the soil profile consisting of existing native surface topsoil or existing inplace surface soil; the zone where plant roots grow.
- D. Topsoil: Top layer of the soil profile consisting of existing native surface topsoil or existing inplace surface soil; the zone where plant roots grow. Its appearance is generally friable, pervious, and black or a darker shade of brown, gray, or red than underlying subsoil; reasonably free of subsoil, clay lumps, gravel, and other objects larger than 2 inches in diameter; and free of weeds, roots, toxic materials, or other nonsoil materials.
- E. Plant-Protection Zone: Area surrounding individual trees, groups of trees, shrubs, or other vegetation to be protected during construction and indicated on Drawings.

- F. Tree-Protection Zone: Area surrounding individual trees or groups of trees to be protected during construction and indicated on Drawings.
- G. Vegetation: Trees, shrubs, groundcovers, grass, and other plants.

1.4 PREINSTALLATION MEETINGS

A. Pre-installation Conference: Conduct conference at Project Site.

1.5 MATERIAL OWNERSHIP

A. Except for materials indicated to be stockpiled or otherwise remain Owner's property, cleared materials shall become Contractor's property and shall be removed from Project site.

1.6 INFORMATIONAL SUBMITTALS

- A. Existing Conditions: Documentation of existing trees and plantings, adjoining construction, and site improvements that establishes preconstruction conditions that might be misconstrued as damage caused by site clearing.
 - 1. Use sufficiently detailed photographs or video recordings.
 - 2. Include plans and notations to indicate specific wounds and damage conditions of each tree or other plant designated to remain.
- B. Topsoil stripping and stockpiling program.
- C. Rock stockpiling program.
- D. Record Drawings: Identifying and accurately showing locations of capped utilities and other subsurface structural, electrical, and mechanical conditions.

1.7 QUALITY ASSURANCE

- A. Topsoil Stripping and Stockpiling Program: Prepare a written program to systematically demonstrate the ability of personnel to properly follow procedures and handle materials and equipment during the Work. Include dimensioned diagrams for placement and protection of stockpiles.
- B. Rock Stockpiling Program: Prepare a written program to systematically demonstrate the ability of personnel to properly follow procedures and handle materials and equipment during the Work. Include dimensioned diagrams for placement and protection of stockpiles.

1.8 FIELD CONDITIONS

A. Traffic: Minimize interference with adjoining roads, streets, walks, and other adjacent occupied or used facilities during site-clearing operations.

- 1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner.
- 2. Provide alternate routes around closed or obstructed trafficways if required by Owner.
- B. Improvements on Adjoining Property: Authority for performing site clearing indicated on property adjoining Owner's property will be obtained by Owner before award of Contract.
 - 1. Do not proceed with work on adjoining property until directed by Architect.
- C. Salvageable Improvements: Carefully remove items indicated to be salvaged and store on site.
- D. Utility Locator Service: Notify One Call for area where Project is located before site clearing.
- E. Do not commence site clearing operations until temporary erosion- and sedimentation-control and tree protection measures are in place.
- F. Tree-Protection Zones: Protect according to City of Beaverton requirements and as noted on the drawings.
- G. Soil Stripping, Handling, and Stockpiling: Perform only when the soil is dry or slightly moist.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Satisfactory Soil Material: Requirements for satisfactory soil material are specified in Section 312000 "Earth Moving."
 - 1. Obtain approved borrow soil material off-site when satisfactory soil material is not available on-site.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Protect and maintain benchmarks and survey control points from disturbance during construction.
- B. Verify that trees, shrubs, and other vegetation to remain or to be relocated have been flagged and that protection zones have been identified and enclosed.
- C. Protect existing site improvements to remain from damage during construction.
 - 1. Restore damaged improvements to their original condition, as acceptable to Owner.

3.2 TEMPORARY EROSION AND SEDIMENTATION CONTROL

- A. Provide temporary erosion- and sedimentation-control measures to prevent soil erosion and discharge of soil-bearing water runoff or airborne dust to adjacent properties and walkways, according to erosion- and sedimentation-control Drawings and requirements of authorities having jurisdiction.
- B. Verify that flows of water redirected from construction areas or generated by construction activity do not enter or cross protection zones.
- C. Inspect, maintain, and repair erosion- and sedimentation-control measures during construction until permanent vegetation has been established.
- D. Remove erosion and sedimentation controls, and restore and stabilize areas disturbed during removal.

3.3 TREE AND PLANT PROTECTION

- A. Protect trees and plants remaining on-site according to the drawings.
- B. Repair or replace trees, shrubs, and other vegetation indicated to remain that are damaged by construction operations.

3.4 EXISTING UTILITIES

- A. Owner will arrange for disconnecting and sealing indicated utilities that serve existing structures before site clearing, when requested by Contractor.
 - 1. Verify that utilities have been disconnected and capped before proceeding with site clearing.
- B. Locate, identify, disconnect, and seal or cap utilities indicated to be removed.
 - 1. Arrange with utility companies to shut off indicated utilities.
- C. Locate, identify, and disconnect utilities indicated to be abandoned in place.
- D. Interrupting Existing Utilities: Do not interrupt utilities serving facilities occupied by Owner or others, unless permitted under the following conditions and then only after arranging to provide temporary utility services according to requirements indicated:
 - 1. Notify Architect not less than two days in advance of proposed utility interruptions.
 - 2. Do not proceed with utility interruptions without Architect's written permission.
- E. Excavate for and remove underground utilities indicated to be removed.

3.5 CLEARING AND GRUBBING

- A. Remove obstructions, trees, shrubs, and other vegetation to permit installation of new construction.
 - 1. Do not remove trees, shrubs, and other vegetation indicated to remain or to be relocated.
 - 2. Grind down stumps and remove roots obstructions, and debris to a depth of 18 inches below exposed subgrade.
 - 3. Use only hand methods or air spade for grubbing within protection zones.
- B. Fill depressions caused by clearing and grubbing operations with satisfactory soil material unless further excavation or earthwork is indicated.
 - 1. Place fill material in horizontal layers not exceeding a loose depth of 8 inches, and compact each layer as specified in Section 31 20 00.

3.6 TOPSOIL STRIPPING

- A. Remove sod and grass before stripping topsoil.
- B. Strip topsoil to depth 6 inches in a manner to prevent intermingling with underlying subsoil or other waste materials.
 - 1. Remove subsoil and nonsoil materials from topsoil, including clay lumps, gravel, and other objects larger than 2 inches in diameter; trash, debris, weeds, roots, and other waste materials.
- C. Stockpile topsoil away from edge of excavations without intermixing with subsoil or other materials. Grade and shape stockpiles to drain surface water. Cover to prevent windblown dust and erosion by water.
 - 1. Do not stockpile topsoil within protection zones.
 - 2. Dispose of surplus topsoil. Surplus topsoil is that which exceeds quantity indicated to be stockpiled or reused.
 - 3. Stockpile surplus topsoil to allow for respreading deeper topsoil.

3.7 STOCKPILING ROCK

- A. Remove naturally formed rocks that measure more than 1 foot across in least dimension. Do not include excavated or crushed rock.
 - 1. Separate or wash off non-rock materials from rocks, including soil, clay lumps, gravel, and other objects larger than 2 inches in diameter; trash, debris, weeds, roots, and other waste materials.
- B. Stockpile rock without intermixing with other materials. Cover to prevent windblown debris from accumulating among rocks.
 - 1. Do not stockpile rock within protection zones.

- 2. Dispose of surplus rock. Surplus rock is that which exceeds quantity indicated to be stockpiled or reused.
- 3. Stockpile surplus rock to allow later use by the Owner.

3.8 SITE IMPROVEMENTS

- A. Remove existing above- and below-grade improvements as indicated and necessary to facilitate new construction.
- B. Remove slabs, paving, curbs, gutters, and aggregate base as indicated.
 - 1. Unless existing full-depth joints coincide with line of demolition, neatly saw-cut along line of existing pavement to remain before removing adjacent existing pavement. Saw-cut faces vertically.
 - 2. Paint cut ends of steel reinforcement in concrete to remain with two coats of antirust coating, following coating manufacturer's written instructions. Keep paint off surfaces that will remain exposed.

3.9 DISPOSAL OF SURPLUS AND WASTE MATERIALS

- A. Remove surplus soil material, unsuitable topsoil, obstructions, demolished materials, and waste materials including trash and debris, and legally dispose of them off Owner's property.
- B. Burning tree, shrub, and other vegetation waste is permitted according to burning requirements and permitting of authorities having jurisdiction. Control such burning to produce the least smoke or air pollutants and minimum annoyance to surrounding properties. Burning of other waste and debris is prohibited.
- C. Separate recyclable materials produced during site clearing from other non-recyclable materials. Store or stockpile without intermixing with other materials, and transport them to recycling facilities. Do not interfere with other Project work.

END OF SECTION 311000

SECTION 312000 – EARTH MOVING

PART 1 - GENERAL

1.1 SUMMARY

- A. This section specifies requirements for the following:
 - 1. Excavating and filling for rough grading the Site.
 - 2. Preparing subgrades for slabs-on-grade, walks, pavements, turf and grasses, and landscape areas.
 - 3. Excavating and backfilling for buildings and structures.
 - 4. Drainage course for concrete slabs-on-grade.
 - 5. Subbase course for concrete walks and pavement.
 - 6. Subsurface drainage backfill for walls and trenches.
 - 7. Excavating and backfilling trenches for utilities and pits for buried utility structures.

1.2 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Related Sections
 - 1. Section 311000 Site Clearing
 - 2. Section 312500 Erosion and Sediment Control

1.3 DEFINITIONS

- A. Backfill: Soil material or controlled low-strength material used to fill an excavation.
 - 1. Initial Backfill: Backfill placed beside and over pipe in a trench, including haunches to support sides of pipe.
 - 2. Final Backfill: Backfill placed over initial backfill to fill a trench.
- B. Base Course: Aggregate layer placed between the subbase course and hot-mix asphalt paving.
- C. Bedding Course: Aggregate layer placed over the excavated subgrade in a trench before laying pipe.
- D. Borrow Soil: Satisfactory soil imported from off-site for use as fill or backfill.
- E. Drainage Course: Aggregate layer supporting the slab-on-grade that also minimizes upward capillary flow of pore water.
- F. Excavation: Removal of material encountered above subgrade elevations and to lines and dimensions indicated.

- 1. Authorized Additional Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions as directed by Architect. Authorized additional excavation and replacement material will be paid for according to Contract.
- 2. Unauthorized Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions without direction by Architect. Unauthorized excavation, as well as remedial work directed by Architect, shall be without additional compensation.
- G. Fill: Soil materials used to raise existing grades.
- H. Structures: Buildings, footings, foundations, retaining walls, slabs, tanks, curbs, mechanical and electrical appurtenances, or other man-made stationary features constructed above or below the ground surface.
- I. Subbase Course: Aggregate layer placed between the subgrade and base course for hot-mix asphalt pavement, or aggregate layer placed between the subgrade and a cement concrete pavement or a cement concrete or hot-mix asphalt walk.
- J. Subgrade: Uppermost surface of an excavation or the top surface of a fill or backfill immediately below subbase, drainage fill, drainage course, or topsoil materials.
- K. Utilities: On-site underground pipes, conduits, ducts, and cables as well as underground services within buildings.

1.4 PREINSTALLATION MEETINGS

- A. Pre-installation Conference: Conduct pre-excavation conference on site.
 - 1. Review methods and procedures related to earthmoving, including, but not limited to, the following:
 - a. Personnel and equipment needed to make progress and avoid delays.
 - b. Coordination of Work with utility locator service.
 - c. Extent of trenching by hand or with air spade.
 - d. Field quality control.

1.5 SUBMITTALS

- A. Qualification Data: For qualified testing agency.
- B. Material Test Reports: For each soil material proposed for fill and backfill as follows:
 - 1. Classification according to ASTM D 2487.
 - 2. Laboratory compaction curve according to ASTM D 1557.

1.6 QUALITY ASSURANCE

- A. Blasting: is not allowed.
- B. Geotechnical Testing Agency Qualifications: Qualified according to ASTM E 329 and ASTM D 3740 for testing indicated.

EARTH MOVING

1.7 FIELD CONDITIONS

- A. Traffic: Minimize interference with adjoining roads, streets, walks, and other adjacent occupied or used facilities during earth-moving operations.
 - 1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner.
 - 2. Provide alternate routes around closed or obstructed traffic ways if required by Owner.
- B. Improvements on Adjoining Property: Authority for performing earth moving indicated on property adjoining Owner's property will be obtained by Owner before award of Contract.
 - 1. Do not proceed with work on adjoining property until directed by Architect.
- C. Utility Locator Service: Notify One Call for area where Project is located before beginning earthmoving operations.
- D. Do not commence earth-moving operations until temporary site fencing and erosion- and sedimentation-control measures and tree protection are in place.
- E. The following practices are prohibited within protection zones:
 - 1. Storage of construction materials, debris, or excavated material.
 - 2. Parking vehicles or equipment.
 - 3. Foot traffic.
 - 4. Erection of sheds or structures.
 - 5. Impoundment of water.
 - 6. Excavation or other digging unless otherwise indicated.
 - 7. Attachment of signs to or wrapping materials around trees or plants unless otherwise indicated.
- F. Do not direct vehicle or equipment exhaust towards protection zones.
- G. Prohibit heat sources, flames, ignition sources, and smoking within or near protection zones.

PART 2 - PRODUCTS

2.1 SOIL MATERIALS

- A. General: Provide borrow soil materials when sufficient satisfactory soil materials are not available from excavations.
- B. Satisfactory Soils:
 - 1. On-site material is suitable for use as general structural fill provided it is properly moisture conditioned, free of debris, organic material, and meets the specifications provided in OSSC 00330.12 (Borrow Material).

- a. Estimated optimum moisture content for compaction to be approximately 17 to 19 percent for silt and clay soil, 15 to 20 percent for the sandy soil, and 9 to 12 percent for the gravelly soil.
- b. Moisture conditioning (drying) will be required to use on-site soil for structural fill.
- c. All fill containing oversize material (particles over 6 inches in diameter) should be placed in a manner that does not produce voids and bridging. The fill should be placed so that larger pieces are evenly distributed, voids are filled, and rocks should not nest atop one another such that voids are created between the rocks. When rock and soil fill materials are placed at the same time, the materials should be thoroughly mixed. Fill containing oversize material should follow the maximum particles size recommendations provided below.

Depth Below Final Subgrade Maximum Particle Size		
0 to 3 feet	6 inches	
3 to 6 feet	8 inches	
6 to 10 feet	10 inches	
Deeper than 10 feet	12 inches	

Table 1.	Fill Maximum	Particle Size

- C. Unsatisfactory Soils:
 - 1. Unsatisfactory soils include satisfactory soils not maintained within 2 percent of optimum moisture content at time of compaction or are not free of debris, organic material, and partials over 6 inches in diameter.
- D. Imported Granular Material
 - 1. Structural Fill Material should be pit- or quarry-run rock, crushed rock, or crushed gravel and sand and should meet the specifications provided in OSSC 00330.14. The imported granular material should be angular, well graded between coarse and fine material, have less than 5 percent by dry weight passing the U.S. Standard No. 200 Sieve, and have at least two fractured faces.
- E. Stabilization Material
 - 1. Stabilization material used in staging or haul road areas, or as trench stabilization material should consist of 4- or 6-inch minus pit-or quarry-run rock, crushed rock or crushed gravel and sand and should meet the specifications provided in OSSC 00330.15 (Select Stone Backfill). The material should have a maximum particle size of 6 inches, less than 5 percent by dry weight passing the U.S. Standard No. 4 Sieve, and at least two mechanically fractured faces. The material should be free of organic matter and other deleterious material.
- F. Trench Backfill
 - 1. Trench back fill should consist of well-graded granular material with a maximum particle size of 1 ½ inches and less than 5 percent by dry weight passing the U.S. Standard No. 200 Sieve and should meet the specifications provided in OSSC 00405.13 (pipe zone material).
- G. Aggregate Base Rock

 Imported granular material used as base rock for building floor slabs and pavements should consist of ³/₄- or 1 ¹/₂- inch minus material and meet the requirements in OSSC 00641 (Aggregate Subbase, Base, and Shoulders). The aggregate should have less than 5 percent by dry weight passing the U.S. Standard No. 200 Sieve.

2.2 GEOTEXTILES

- A. Subgrade Geotextile
 - 1. Subgrade geotextile should conform to OSSC Table 02320-1 (Geotextile Property Values for Drainage Geotextile) and OSSC 00350 (Geosynthetic Installation). The geotextile should have a Level "B" certification. A minimum initial aggregate base lift of 6 inches is required over geotextiles.
- B. Drainage Geotextile
 - 1. Drainage geotextile should conform to Type 2 material of OSSC Table 02320-1 (Geotextile Property Values for Drainage Geotextile) and OSSC 00350 (Geosyntehtic Installation). The geotextile should have a Level "B" certification. A minimum initial aggregate base lift of 6 inches is required over geotextiles.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards created by earth-moving operations.
- B. Protect and maintain erosion and sedimentation controls during earth-moving operations.
- C. Protect subgrades and foundation soils from freezing temperatures and frost. Remove temporary protection before placing subsequent materials.

3.2 DEWATERING

- A. Prevent surface water and ground water from entering excavations, from ponding on prepared subgrades, and from flooding Project site and surrounding area.
- B. Protect subgrades from softening, undermining, washout, and damage by rain or water accumulation.
 - 1. Reroute surface water runoff away from excavated areas. Do not allow water to accumulate in excavations. Do not use excavated trenches as temporary drainage ditches.

3.3 EXPLOSIVES

A. Explosives: Do not use explosives.

3.4 EXCAVATION, GENERAL

- A. Unclassified Excavation: Excavate to subgrade elevations regardless of the character of surface and subsurface conditions encountered. Unclassified excavated materials may include rock, soil materials, and obstructions. No changes in the Contract Sum or the Contract Time will be authorized for rock excavation or removal of obstructions.
 - 1. If excavated materials intended for fill and backfill include unsatisfactory soil materials and rock, replace with satisfactory soil materials.
 - 2. Remove rock to lines and grades indicated to permit installation of permanent construction without exceeding the following dimensions:
 - a. 24 inches outside of concrete forms other than at footings.
 - b. 12 inches outside of concrete forms at footings.
 - c. 6 inches beneath bottom of concrete slabs-on-grade.
 - d. 6 inches beneath pipe in trenches and the greater of 24 inches wider than pipe trench.
- B. Classified Excavation: Excavate to subgrade elevations. Material to be excavated will be classified as earth and rock. Do not excavate rock until it has been classified and cross-sectioned by Architect.
 - 1. Earth excavation includes excavating pavements and obstructions visible on surface; underground structures, utilities, and other items indicated to be removed; and soil, boulders, and other materials not classified as rock or unauthorized excavation.
 - a. Intermittent drilling; ram hammering; or ripping of material not classified as rock excavation is earth excavation.
 - 2. Rock excavation includes removal and disposal of rock. Remove rock to lines and subgrade elevations indicated to permit installation of permanent construction without exceeding the following dimensions:
 - a. 24 inches outside of concrete forms other than at footings.
 - b. 12 inches outside of concrete forms at footings.
 - c. 6 inches beneath bottom of concrete slabs-on-grade.
 - d. 6 inches beneath pipe in trenches and the greater of 24 inches wider than pipe trench.

3.5 EXCAVATION FOR STRUCTURES

- A. Excavate to indicated elevations and dimensions within a tolerance of plus or minus 1 inch. If applicable, extend excavations a sufficient distance from structures for placing and removing concrete formwork, for installing services and other construction, and for inspections.
 - 1. Excavations for Footings and Foundations: Do not disturb bottom of excavation. Excavate by hand to final grade just before placing concrete reinforcement. Trim bottoms to required lines and grades to leave solid base to receive other work.
- B. Excavations at Edges of Tree- and Plant-Protection Zones:

1. Excavate by hand or with an air spade to indicated lines, cross sections, elevations, and subgrades. If excavating by hand, use narrow-tine spading forks to comb soil and expose roots. Do not break, tear, or chop exposed roots. Do not use mechanical equipment that rips, tears, or pulls roots.

3.6 EXCAVATION FOR WALKS AND PAVEMENTS

A. Excavate surfaces under walks and pavements to indicated lines, cross sections, elevations, and subgrades.

3.7 EXCAVATION FOR UTILITY TRENCHES

- A. Excavate trenches to indicated gradients, lines, depths, and elevations.
 - 1. Beyond building perimeter, excavate trenches to allow installation of top of pipe below frost line.
- B. Excavate trenches to uniform widths to provide the following clearance on each side of pipe or conduit. Excavate trench walls vertically from trench bottom to 12 inches higher than top of pipe or conduit unless otherwise indicated.
- C. Trench Bottoms: Excavate and shape trench bottoms to provide uniform bearing and support of pipes and conduit. Shape subgrade to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits. Remove projecting stones and sharp objects along trench subgrade.
 - 1. For pipes and conduit less than 6 inches in nominal diameter, hand-excavate trench bottoms and support pipe and conduit as shown on the drawings.
 - 2. For pipes and conduit 6 inches or larger in nominal diameter, shape bottom of trench as shown on the drawings.
 - 3. For flat-bottomed, multiple-duct conduit units, hand-excavate trench bottoms and support conduit as shown on the drawings.
- D. Trenches in Tree- and Plant-Protection Zones:
 - 1. Hand-excavate to indicated lines, cross sections, elevations, and subgrades. Use narrowtine spading forks to comb soil and expose roots. Do not break, tear, or chop exposed roots. Do not use mechanical equipment that rips, tears, or pulls roots.
 - 2. Do not cut main lateral roots or taproots; cut only smaller roots that interfere with installation of utilities.

3.8 SUBGRADE INSPECTION

- A. Notify Geotechnical Engineer when excavations have reached required subgrade.
- B. If Geotechnical Engineer determines that unsatisfactory soil is present, continue excavation and replace with compacted backfill or fill material as directed.

- C. Proof-roll subgrade to identify soft pockets and areas of excess yielding. Do not proof-roll wet or saturated subgrades.
 - 1. Completely proof-roll subgrade in one direction. Limit vehicle speed to 3 mph.
 - 2. Excavate soft spots, unsatisfactory soils, and areas of excessive pumping or rutting, as determined by Geotechnical Engineer, and replace with compacted backfill or fill as directed.
- D. Authorized additional excavation and replacement material will be paid for according to Contract provisions.
- E. Reconstruct subgrades damaged by freezing temperatures, frost, rain, accumulated water, or construction activities, as directed by Architect, without additional compensation.

3.9 UNAUTHORIZED EXCAVATION

- A. Fill unauthorized excavation under foundations or wall footings by extending bottom elevation of concrete foundation or footing to excavation bottom, without altering top elevation. Lean concrete fill, with 28-day compressive strength of 2500psi, may be used when approved by Architect.
 - 1. Fill unauthorized excavations under other construction, pipe, or conduit as directed by Architect.

3.10 STORAGE OF SOIL MATERIALS

- A. Stockpile borrow soil materials and excavated satisfactory soil materials without intermixing. Place, grade, and shape stockpiles to drain surface water. Cover to prevent windblown dust.
 - 1. Stockpile soil materials away from edge of excavations. Do not store within drip line of remaining trees.

3.11 BACKFILL

- A. Place and compact backfill in excavations promptly, but not before completing the following:
 - 1. Construction below finish grade including, where applicable, subdrainage, dampproofing, waterproofing, and perimeter insulation.
 - 2. Surveying locations of underground utilities for Record Documents.
 - 3. Testing and inspecting underground utilities.
 - 4. Removing concrete formwork.
 - 5. Removing trash and debris.
 - 6. Removing temporary shoring, bracing, and sheeting.
 - 7. Installing permanent or temporary horizontal bracing on horizontally supported walls.
- B. Place backfill on subgrades free of mud, frost, snow, or ice.

- 3.12 UTILITY TRENCH BACKFILL
 - A. Place backfill on subgrades free of mud, frost, snow, or ice.
 - B. Place and compact bedding course on trench bottoms and where indicated. Shape bedding course to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits.
 - C. Backfill voids with trench backfill material while removing shoring and bracing.
 - D. Initial Backfill:
 - 1. Soil Backfill: Place and compact initial backfill of trench backfill, to a height of 12 inches over the pipe.
 - a. Carefully compact initial backfill under pipe haunches and compact evenly up on both sides and along the full length of piping or conduit to avoid damage or displacement of piping or conduit. Coordinate backfilling with utilities testing.
 - E. Final Backfill:
 - 1. Soil Backfill: Place and compact final backfill of trench backfill to final subgrade elevation.

3.13 SOIL FILL

- A. Plow, scarify, bench, or break up sloped surfaces steeper than 1 vertical to 4 horizontal so fill material will bond with existing material.
- B. Place and compact fill material in layers to required elevations as follows:
 - 1. Under grass and planted areas, use satisfactory soil material.
 - 2. Under walks and pavements, use satisfactory soil material.
 - 3. Under steps and ramps, use structural fill.
 - 4. Under building slabs, use structural fill.
 - 5. Under footings and foundations, use structural fill.
- C. Place soil fill on subgrades free of mud, frost, snow, or ice.

3.14 SOIL MOISTURE CONTROL

- A. Uniformly moisten or aerate subgrade and each subsequent fill or backfill soil layer before compaction to within 3 percent of optimum moisture content.
 - 1. Do not place backfill or fill soil material on surfaces that are muddy, frozen, or contain frost or ice.
 - 2. Remove and replace, or scarify and air dry, otherwise satisfactory soil material that exceeds optimum moisture content by 3 percent and is too wet to compact to specified dry unit weight.

3.15 COMPACTION OF SOIL BACKFILLS AND FILLS

- A. Place backfill and fill soil materials in layers not more 8 inches in loose depth for material compacted by heavy compaction equipment and not more than 4 inches in loose depth for material compacted by hand-operated tampers.
- B. Place backfill and fill soil materials evenly on all sides of structures to required elevations and uniformly along the full length of each structure.
- C. Compact soil materials to not less than the following percentages of maximum dry unit weight according to ASTM D 1557:
 - 1. In all embankment fills and under structures, building slabs, steps, play fields and pavements, scarify and recompact top 12 inches of subgrade and each layer of backfill or fill soil material as recommended below for structural fill.
 - 2. In all embankment fills and under walkways, scarify and recompact top 6 inches below subgrade and compact each layer of backfill or fill soil material as recommended below for structural fill.
 - 3. Non-structural (including landscape) areas, scarify and recompact top 6 inches below subgrade and compact each layer of backfill or fill soil material at 85 percent.
 - 4. For utility trenches, compact to at least 95 percent of the maximum dry density, as determined by ASTM D 1557, or as required by the pipe manufacturer or local building department.
 - 5. Compacted structural fill as follows: to not less than 95 percent of the maximum dry density for fine-grained soil and 95 percent of the maximum dry density for granular soil, as determined by ASTM D 1557

3.16 GRADING

- A. General: Uniformly grade areas to a smooth surface, free of irregular surface changes. Comply with compaction requirements and grade to cross sections, lines, and elevations indicated.
 - 1. Provide a smooth transition between adjacent existing grades and new grades.
 - 2. Cut out soft spots, fill low spots, and trim high spots to comply with required surface tolerances.
- B. Site Rough Grading: Slope grades to direct water away from buildings and to prevent ponding. Finish subgrades to elevations required to achieve indicated finish elevations, within the following subgrade tolerances:
 - 1. Turf or Unpaved Areas: Plus or minus 1 inch.
 - 2. Walks: Plus or minus 1/2 inch
 - 3. Pavements: Plus or minus 1/2 inch
- C. Grading inside Building Lines: Finish subgrade to a tolerance of 1/2 inch when tested with a 10 foot straightedge.
- D. Finish Grading: Slope grades to direct water away from building and prevent ponding. Finish grade to elevations noted on the plans and within the following finish grading tolerances:

- 1. Landscape or Unpaved Areas: Plus or minus 1/2 inch.
- 2. Pedestrian Paved Areas: Plus or minus 1/8 inch. Cross slope shall not exceeds 2% and longitudinal slope (in direction of travel) shall not exceed 5% unless noted on the plans.
- 3. Vehicle Paved Areas: Plus or minus 1/4 inch.
- 4. Vehicle Paved Areas noted as ADA Accessible Route: Plus or minus 1/8 inch. Cross slope shall not exceeds 2% and longitudinal slope (in direction of travel) shall not exceed 5% unless noted on the plans.
- 5. Vehicle Paved Areas noted as ADA Parking Stall or Aisle: Plus or minus 1/8 inch. Slope shall not exceeds 2% in any direction.
- 6. Sports Fields, Track, and Tennis Courts: Refer to sports field specification sections.

3.17 BASE COURSES UNDER PAVEMENTS AND WALKS

- A. Place base course on subgrades free of mud, frost, snow, or ice.
- B. On prepared subgrade, place base course under pavements and walks as follows:
 - 1. Install separation geotextile on prepared subgrade according to manufacturer's written instructions, overlapping sides and ends.
 - 2. Place base course material over subgrade course under hot-mix asphalt pavement.
 - 3. Shape base course to required crown elevations and cross-slope grades.
 - 4. Place base course that exceed 6 inches in compacted thickness in layers of equal thickness, with no compacted layer more than 6 inches thick or less than 3 inches thick.
 - 5. Compact base course within 3 percent of the optimum moisture content to required grades, lines, cross sections, and thickness to not less than 95 percent of maximum dry unit weight according to ASTM D 1557

3.18 DRAINAGE COURSE UNDER CONCRETE SLABS-ON-GRADE

- A. Place drainage course on subgrades free of mud, frost, snow, or ice.
- B. On prepared subgrade, place and compact drainage course under cast-in-place concrete slabs-ongrade as follows:
 - 1. Install subdrainage geotextile on prepared subgrade according to manufacturer's written instructions, overlapping sides and ends.
 - 2. Place drainage course that exceeds 6 inches in compacted thickness in layers of equal thickness, with no compacted layer more than 6 inches thick or less than 3 inches thick.
 - 3. Compact each layer of drainage course to required cross sections and thicknesses to not less than 95 percent of maximum dry unit weight according to ASTM D 1557.

3.19 FIELD QUALITY CONTROL

- A. Special Inspections: Owner will engage a qualified special inspector to perform the following special inspections:
 - 1. Determine prior to placement of fill that site has been prepared in compliance with requirements.

- 2. Determine that fill material classification and maximum lift thickness comply with requirements.
- 3. Determine, during placement and compaction, that in-place density of compacted fill complies with requirements.
- B. Testing Agency: Owner will engage a qualified geotechnical engineering testing agency to perform tests and inspections.
- C. Allow testing agency to inspect and test subgrades and each fill or backfill layer. Proceed with subsequent earth moving only after test results for previously completed work comply with requirements.
- D. Footing Subgrade: All footing subgrades should be evaluated by the Geotechnical Engineer to evaluate bearing conditions. At footing subgrade verification and approval shall be completed by the Geotechnical Engineer.
- E. Testing agency will test compaction of soils in place according to ASTM D 1556, ASTM D 2167, ASTM D 2937, and ASTM D 6938, as applicable. Tests will be performed at the following locations and frequencies:
 - 1. Paved and Building Slab Areas: At subgrade and at each compacted fill and backfill layer, at least one test for every 20,000 sq ft or less of paved area or building slab, but in no case fewer than three tests, or as determined adequate by the Geotechnical Engineer.
 - 2. Foundation Wall Backfill: At each compacted backfill layer, at least one test for every 100 feet or less of wall length, but no fewer than two tests, or as determined adequate by the Geotechnical Engineer.
 - 3. Trench Backfill: At each compacted initial and final backfill layer, at least one test for every 150 feet or less of trench length, but no fewer than two tests, or as determined adequate by the Geotechnical Engineer.
- F. When testing agency reports that subgrades, fills, or backfills have not achieved degree of compaction specified, scarify and moisten or aerate, or remove and replace soil materials to depth required; recompact and retest until specified compaction is obtained.

3.20 PROTECTION

- A. Protecting Graded Areas: Protect newly graded areas from traffic, freezing, and erosion. Keep free of trash and debris.
- B. Repair and reestablish grades to specified tolerances where completed or partially completed surfaces become eroded, rutted, settled, or where they lose compaction due to subsequent construction operations or weather conditions.
 - 1. Scarify or remove and replace soil material to depth as directed by Architect; reshape and recompact.
- C. Where settling occurs before Project correction period elapses, remove finished surfacing, backfill with additional soil material, compact, and reconstruct surfacing.

1. Restore appearance, quality, and condition of finished surfacing to match adjacent work, and eliminate evidence of restoration to greatest extent possible.

3.21 DISPOSAL OF SURPLUS AND WASTE MATERIALS

- A. Remove surplus satisfactory soil and waste materials, including unsatisfactory soil, trash, and debris, and legally dispose of them off Owner's property.
- B. Transport surplus satisfactory soil to designated storage areas on Owner's property. Stockpile or spread soil as directed by Architect.
 - 1. Remove waste materials, including unsatisfactory soil, trash, and debris, and legally dispose of them off Owner's property.

END OF SECTION 312000

SECTION 312317 - TRENCHING

PART 1 - GENERAL

1.1 SUMMARY

- A. Trench excavation consists of excavation, bedding, backfill, and removal or disposal of material as necessary in the installation of water lines and, sanitary and storm sewer lines, and appurtenances, conduits, conductors, culverts and any other installation requiring trenching.
 - 1. This work includes, but is not limited to, sheeting, bracing, dewatering, disposal of unsuitable materials, and importing approved bedding or backfill material.
 - 2. All work shall be done in accordance with these Specifications and shown on the Drawings in conformity with the lines, grades, and dimensions.
- B. Unless otherwise provided in the Contract, other work required under this item shall include the removal of structures or portions thereof, grubbing of structure sites which otherwise would not be grubbed, the construction of subsequent removal of shoring or cofferdams, the dewatering of excavated areas, the protection of excavated materials from weather and the placement and compaction of excavated or imported material. Work done under this item shall conform to all federal, state and local safety regulations.

1.2 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. RELATED SECTIONS
 - 1. Section 312000 Earth Moving
 - 2. Section 312500 Erosion/Sedimentation Control
 - 3. Section 334100 Storm Drainage Piping

1.3 SITE CONDITIONS

A. Existing Utility Systems: The existing utility systems shown are based on record drawings supplied by the Owner, and "surface" field survey. Prior to constructing any of the utility systems, the Contractor shall "pothole" all connection points and utility crossings to verify inverts, sizes, locations, and potential conflicts. Any discrepancies shall be reported to the Engineer/Architect for resolution or redesign.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Bedding: The bedding of pipes, conduits, cables, and structures shall be as shown on the Plans or as directed by the Architect. The bedding material shall be placed and thoroughly compacted over the full width of the trench. Samples of the proposed materials shall be submitted to the Architect for approval.
- B. Backfill: The backfill for pipes, conduits, cables, and structures shall be as shown on the Drawings or as directed by the Architect. The backfill material shall be placed in maximum eight-inch lifts and thoroughly compacted over the full width of the trench. Samples of the proposed materials shall be submitted to the Architect for approval.
 - 1. Backfill as specified in Section 312000.
 - 2. Granular backfill shall be used in all other locations where native backfill is not designated. Unclassified excavated material used as native backfill shall be earth, sand, gravel, rock, or combinations thereof, free of humus, organic matter, vegetable matter, frozen material, clods, sticks, and debris and containing no stones having a dimension greater than three inches. The materials shall predominate in the finer sizes and, in place, shall present no voids and no isolated points or areas of larger stones which would cause fracture or denting of the utility or structure or subject it to undue stress. Use of the native backfill will not be allowed.
 - 3. Granular backfill shall be used under paved areas, play fields, in trenches in streets, in trenches in public right-of-ways and easements, and other areas subject to wheel traffic, and at structures or as designated on the plans. Granular backfill material shall be 3/4 inch minus crushed aggregate. Top of rock elevation shall be held down at the specified depth in areas designated to receive asphalt paving. All granular backfill shall be placed in maximum eight-inch lifts and compacted to 95% (top 2 feet) and 90% (below 2 feet) maximum dry density per ASTM D 1557 or, as required by the applicable agency in the public right-of-way.

PART 3 - EXECUTION

3.1 CONTRACTOR'S RESPONSIBILITY FOR UTILITY PROPERTIES AND SERVICES

- A. The Contractor shall comply with OAR 952-001-0010 through OAR 952-001-0090 and shall notify all utility companies for line locations 72 hours (minimum) prior to start of work.
- B. At points where the Contractor's operation could cause damage or interference to railway, telegraph, telephone, television, power, oil, gas, water, irrigation, or other private, public or municipal utilities, the Contractor shall suspend work until all arrangements necessary for the protection thereof have been made by the Contractor.
- C. The Contractor shall notify all utility offices which are affected by the construction operation at least 72 hours in advance of excavation. Under no circumstances shall the Contractor expose or interrupt any utility without first requesting permission and being granted to do so from the affected agency.

- 1. It shall be the Contractor's responsibility, once permission from the utility has been granted, to locate, if necessary, and expose all of the existing underground utilities in advance of the trenching operation.
- D. The Contractor shall be solely and directly responsible to the Owner and utility companies for any damage, expense, or claims of any kind brought because of injuries, damages or delay which may result from the carrying out of the work to be done under the Contract.
- E. In the event of interruption to domestic water or to other utility services as a result of accidental breakage, or as a result of being exposed, unsupported, or a lack of coordination, the Contractor shall promptly notify the Architect and the agency involved. The Contractor shall cooperate with the said authority in restoration of service as promptly as possible and shall bear any and all costs of repair.
 - 1. In no case shall interruption of any water or utility service be allowed to exist outside working hours unless prior approval of the Architect or agency involved is granted.
- F. Neither the Owner nor its officers or agents shall be responsible to the Contractor for damages as a result of the location of the underground utilities being other than that shown on the plans or for the existence of underground utilities not shown the plans.

3.2 FIELD RELOCATION

A. During construction, minor relocations of the line may be necessary. Such relocations shall be made only with approval from the Architect. Unforeseen obstructions encountered as a result of such relocations will not become subject to claims for additional compensation by the Contractor to any greater extent that the original lump sum of the contract or unit price of the utility being installed.

3.3 OPENING TRENCHES

- A. The Contractor shall not begin the trench excavation until the necessary material is on hand to complete the work involved.
 - 1. The trenches shall be opened in accordance with the lines and grades given for the work, at such times and as far in advance of the work as may be required by the Architect.
 - 2. Not more than a total of 100 feet of trench shall be opened in advance of the completed utility unless authorized by the Architect. Related structures must be completed and backfilled at the time of line installation.

3.4 BARRICADES, GUARDS AND SAFETY PROVISIONS

- A. To protect persons from injury and to avoid property damage, adequate barricades, construction signs, warning lights, and guards as required shall be placed and maintained during the progress of the work and until it is safe for public use.
 - 1. Watchmen or flag personnel shall be provided as necessary.

2. Rules and regulations of all local and Federal authorities regarding safety provisions shall be observed. The Contractor will be solely responsible for accidents caused by inadequate or insufficient safety provisions

3.5 PAVEMENT REMOVAL

- A. All bituminous and concrete pavements, regardless of the thickness shall be sawcut prior to excavation. Width of the pavement cut shall be equal to the prescribed width of the trench at the ground surface or as shown on the plans.
 - 1. Pavement removed during excavation shall be piled separately from other excavation materials and removed from the site. Pavement shall not be used as backfill material. Uneven pavement edges shall be sawcut before patching the pavement.

3.6 OBSTRUCTIONS

- A. This item refers to obstructions which may be encountered and do not require replacement.
 - 1. Obstructions to the construction of the trench such as tree roots, stumps, abandoned piling, buildings and concrete structures, logs, rubbish, and debris of all types shall be removed without additional compensation from the Owner.
 - 2. The Architect may, if requested, make changes in the trench alignment to avoid major obstructions, if such alignment changes can be made within the perpetual easement and right-of-way and without adversely affecting the intended function of the facility or increase costs to the Owner. Sewer and water trenches must be maintained at a minimum specified separation, however.

3.7 INTERFERING STRUCTURES

- A. The Contractor shall remove, replace and/or repair any damage done by the Contractor during construction to fences, buildings, cultivated fields, drainage crossings, and any other properties at his own expense without additional compensation from the Owner.
 - 1. The Contractor shall replace or repair these structures to a condition as good as or better than their original condition prior to commencing work in the area.
- B. If the Contractor encounters existing structures which will prevent construction and are not adequately shown on the plans, he shall notify the Architect before continuing with the work in order that the Architect may make such field revisions as necessary to avoid conflict with the existing conditions.
 - 1. The cost of waiting or "downtime" during such field revisions shall be borne by the Contractor without additional cost to the Owner or liability to the Architect.
 - 2. If the Contractor fails to so notify the Architect when a conflict of this nature is encountered, but proceed with construction despite this interference, he shall do so at his own risk with no additional payment.

3.8 EASEMENTS

- A. Any damage to private property, either inside or outside the limits of the easements provided by the Owner, shall be the responsibility of the Contractor.
 - 1. Before final payment will be authorized by the Architect, the Contractor will be required to furnish the Owner with written releases from property owners where special agreements or easements have been obtained by the Contractor or where the Contractor's operations for any reason, have not been kept within the construction right-of-way obtained by the Owner.
 - 2. Any such special agreements must be in written form and shall not involve the Owner or Architect as to liabilities in any way.

3.9 GRADES

- A. The bottom of the trench shall be excavated to the lines and grades shown on the plans or established by the Architect with proper allowance for pipe thickness and required bedding. Any trench excavated below grade shall be returned to grade at the Contractor's expense, with fine bedding material.
 - 1. The bedding shall be placed over the full width of the trench in thoroughly compacted layers as previously specified herein. Grades shall be smooth without humps or sags.
- B. The Architect shall be notified with reasonable notice in advance when a section has been excavated and is ready for installation of the utility line or structure. The Architect at that time will make a determination as to the suitability of the excavation foundation and will give notice to the Contractor to proceed or remove unstable material as covered in "Foundation Stabilization."

3.10 WIDTH OF TRENCH

- A. Trenches shall be excavated to a sufficient width to permit proper installation of piping, conduits, or related improvements as shown on the plans or required by local standards and specifications.
 - 1. For the installation of utilities or conduits, the minimum width of trenches shall be as shown on the drawings.
- B. In cases where excessive width of excavation would cause damage to adjacent structure, the trench shall not be excavated in excess of the minimum width as specified herein or detailed on the drawings.

3.11 BORING

A. Boring may be used as an approved method in lieu of open trench excavation if approved by the Architect. The Contractor shall first show just cause and furnish the Architect with a detailed construction schedule outlining methods, time schedule and proposed safety measures to be incorporated in construction.

1. Upon receiving approval, the Contractor will not deviate from his proposed schedule without first obtaining approval of the Architect and other respective agencies involved in that portion of the work.

3.12 DE-WATERING

- A. Whenever water is encountered in the trench or excavation area, the Contractor shall pump or otherwise dry the bottom of the trench or excavated area before the pipe or conduit installation is commenced.
 - 1. The Contractor shall not allow water encountered in the trench or excavated area to escape down any pipe or conduit in place unless he first obtains written approval from the Architect for this method of de-watering.
 - 2. The Contractor will be responsible for cleaning and/or flushing as required, the complete pipe, conduit, or structure. Any soil, aggregate or other foreign matter in the utility prior to acceptance must be removed at the Contractor's expense prior to final acceptance of the work.

3.13 SHORING AND SHEATHING

- A. The Contractor shall use whatever means necessary to maintain safe working conditions and protect adjacent property and structures from damage due to excavation. The Contractor shall conform to all federal, state and local regulations governing shoring, sheathing, and excavation.
 - 1. When shoring or sheathing is installed, the trench width shall be increased accordingly. The shoring or sheathing shall remain in place until the utility or structure is backfilled to a point where caving could not damage the installation.
 - 2. No payment will be made for shoring or sheathing. All costs involved in placement and removal of shoring and sheathing shall be considered incidental to the work.

3.14 LOCATION OF EXCAVATED MATERIALS

- A. During excavation the Contractor shall locate excavated material so as not to block any public right-of-way, traveled roadways, public or private; and unless otherwise approved by the Architect, roadways shall be kept open to at least one lane of traffic.
 - 1. The Contractor shall store or waste excavated materials only in designated areas unless otherwise approved by the Architect. Utmost care shall be taken to prevent spillage or damage to property adjacent to the project.
- B. Excavated materials unsuitable for backfill as described herein or not required to meet original or specified grades shall be removed as soon as possible or at least by completion of backfill.
 - 1. No utilities will be considered for payment until these surplus materials have been removed and backfill completed as specified above or as otherwise directed by the Architect. No additional payment will be made to the contractor for disposal of excess materials.

3.15 FOUNDATION STABILIZATION

A. When, in the opinion of the Geotechnical Engineer, the existing material in the bottom of the trench or excavated area is unsuitable for supporting the pipe, conduit, structure, or related appurtenances, excavation below the flowline of the pipe or base of other structure shall be executed to a suitable depth as directed by the Architect.

3.16 MAINTENANCE OF BACKFILL

A. Notwithstanding the type of backfill placement, the backfilled trench or excavation surface shall be maintained until all construction has been completed and accepted by the Owner and Architect. This maintenance shall include but not be limited to the addition of backfill in settled areas and surface rock or pavement in roadways to keep the trench reasonably smooth and free from excessive ruts and potholes.

END OF SECTION 312317

SECTION 312500 - EROSION AND SEDIMENT CONTROL

PART 1 - GENERAL

1.1 SUMMARY

- A. Erosion/Sedimentation Control (ESC) is required on this project. Construction of all erosion control measures shall be in accordance with the City of Beaverton and Clean Water Services permit requirements. Compost based BMP's shall be constructed in accordance with Oregon Department of Transportation Section 00280 Erosion and Sediment Control specifications and details. All work shall comply with US Army Corps of Engineers and Oregon Department of State Lands Joint Permit and Sections 404 and 401 permit conditions and requirements.
- B. The implementation of the ESC and the construction, maintenance, replacement, and upgrading of these ESC facilities is the responsibility of the Contractor until all construction is completed and approved and the final vegetation/landscaping is established.
- C. This section describes temporary measures and monitoring to control water pollution, soil erosion, and siltation. Erosion, sediment, and pollutant control (EPSC) devices or methods include the use of construction entrances, tree protection fences, diversion dikes, check dams, sediment basins and traps, compost filter sock sediment barriers, compost blanket mulch, gravel, mulches, sediment barriers, grasses, slope drains, and other techniques.
- D. The boundaries of the clearing limits and limits of grading shown on this plan shall be clearly flagged in the field prior to construction. During the construction period, no disturbance beyond the flagged clearing area shall be permitted. The flagging shall be maintained by the Contractor for the duration of the construction.
- E. The ESC facilities shown on this plan and/or details must be constructed in conjunction with all mass grading and site utility construction, in such a manner as to ensure that sediment and sediment laden water does not enter the drainage system, roadways, or violate applicable water standards.
- F. The ESC facilities shown on the plan and/or details are the minimum requirements for anticipated site conditions. During the construction period, these ESC facilities shall be upgraded as needed for unexpected storm events or site conditions to ensure that sediment and sediment-laden water do not leave the site.

1.2 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Related Sections
 - 1. Section 311000 Site Clearing
 - 2. Section 312000 Earth Moving

3. Section 312317 – Trenching

1.3 SUBMITTALS

- A. At the pre-construction meeting, submit the following supplemental EPSC information:
 - 1. Construction start and completion dates.
 - 2. Dates when EPSC measures will be in place.
 - 3. Projected date of removal of erosion control structures (after soil is stabilized by vegetation or pavement).
 - 4. Description of control procedures to prevent the discharge of all wash water from concrete trucks into the storm sewer system.
 - 5. Description of procedures for prompt maintenance or repair of EPSC measures utilized on-site.
 - 6. Description of best management practices that will be used to prevent or minimize storm water from being exposed to pollutants from spills, cleaning and maintenance activities, and waste handling activities. These pollutants include fuel, hydraulic fluid, and other oils from vehicles and machinery as well as debris, leftover paints, solvents, and glues from construction operations.

1.4 QUALITY ASSURANCE

- A. The Contractor is to comply with all applicable local, State, and Federal ordinances, rules, and regulations concerning erosion and sedimentation control and stormwater runoff.
- B. In case of conflict between the above codes, regulations, references, and standards and these specifications, the more stringent requirements shall govern.
- C. Conduct a Preconstruction Meeting onsite as directed by the Owner or Owner's Representative prior to the start of construction.

1.5 PROJECT SITE CONDITIONS

A. The Contractor to visit the site and verify all existing conditions affecting the work of this section prior to submitting bids or proposals. Additional compensation will not be allowed for revisions or modification of work resulting from failure to verify existing conditions.

PART 2 - PRODUCTS

2.1 GENERAL

- A. All products shall conform to the applicable requirements of City of Beaverton and Clean Water Services permit requirements and Oregon Department of Transportation specifications Section 00280 – Erosion and Sediment Control.
 - 1. Construction Entrance
 - 2. Tree Protection Fence

EROSION AND SEDIMENT CONTROL

- 3. Inlet Protection
- 4. Compost Filter Sock Sediment Barriers
- 5. Compost Filter Blanker
- 6. Tire Washes
- 7. Concrete Washouts
- 8. Outlet Protection
- 9. Plastic Sheeting
- 10. Diversion Dikes
- 11. Temporary Seeding
- 12. Soil Tackifier
- 13. Erosion Control Blankets
- 14. Dust Control
- 15. Temporary Pipe Slope Drains

PART 3 - EXECUTION

3.1 GENERAL

- A. The implementation of the EPSC measures and the construction, performance monitoring, maintenance, replacement, and upgrading of the EPSC measures are the responsibility of the Contractor until all construction is completed and accepted and vegetation/landscaping and paving is established.
- B. The EPSC measures shown on the drawings shall be constructed in conjunction with all clearing, grading, trenching, and earthwork activities and in a manner that ensures that sediment and sediment-laden water do not enter the drainage system, roadways, or violate applicable water quality standards.
- C. The EPSC measures shown on the drawings are the minimum requirements for anticipated site conditions and Contractor methods and sequences. During the construction period, the EPSC measures shall be upgraded as needed for unexpected conditions, storm events, or Contractor methods or sequences and to ensure that sediment and sediment-laden water do not leave the site.
- D. The Contractor shall be responsible for implementing temporary erosion control measures during construction to correct unforeseen conditions. The Contractor shall be responsible for additional erosion control due to the Contractor's negligence, carelessness, or failure to install planned controls as a part of the work.
- E. Implementation, construction, and maintenance of EPSC measures shall be in accordance with the City of Beaverton and Clean Waters Services requirements.
- F. Implementation, construction, and maintenance of EPSC measures shall be in accordance with the Clean Water Services Design AND Construction Standards.
- G. Do not begin soil disturbance activities until perimeter EPSC measures are in place.

H. The erosion control drawings together with the specifications constitute the EPSC plan. A copy of the EPSC plan shall be retained on site and made available to the City of Beaverton and Clean Water Services staff upon request.

3.2 CONSTRUCTION DETAILS

- A. Install and maintain all site public notification signs as shown on the drawings and keep signs easily readable from the public right-of-way throughout the duration of the ground-disturbing activities. Remove and dispose of signs upon completion of work.
- **B**. No visible or measurable erosion material or pollutant shall exit the construction site. Visible or measurable is defined as:
 - 1. Deposits of mud, dirt, sediment or similar material exceeding 1/2 cubic foot in volume in any area of 100 square feet or less on public or private streets, adjacent property, or into the storm and surface water system, either by direct deposit, dripping, discharge, or as a result of the action of erosion.
 - 2. Evidence of concentrated flows of water over bare soils; turbid or sediment laden flows; or evidence of on-site erosion such as rivulets on bare soil slopes, where the flow of water is not filtered or captured on the site.
 - 3. Earth slides, mud flows, earth sloughing, or other earth movement which leaves the property.
- C. Employ all reasonable means and methods to control or divert upslope stormwater runoff away from cleared and grubbed areas, stockpiled materials, and other disturbed areas that will be open or stockpiled for periods longer than two-weeks.
- D. Construction entrances, exits, and parking areas shall be graveled or paved to reduce the tracking of sediment onto public or private roads. Maintain for the duration of the project.
- E. Unpaved roads on the site shall be graveled or under other effective erosion and sediment control measures, either on the road or down gradient, to prevent sediment and sediment-laden water from leaving the site.
- F. Preserve existing vegetation where practicable and revegetate open areas after grading or construction.
- G. Continuously secure or protect soil stockpiles from runoff and erosion throughout the project with temporary soil stabilization measures or protective cover.
- H. Provide ongoing maintenance, repair, and restoration of EPSC measures to keep them continually functional.
 - 1. The following maintenance activities shall be included:
 - a. Visual or measurable amounts of sediment and pollutants that leave the site shall be cleaned up immediately and placed back on the site or properly disposed. Under no conditions shall sediment be intentionally washed into storm sewers or drainage ways.
 - b. Clean catch basin protection when design capacity has been reduced by 50 percent.

- c. Remove sediment trapped by sediment barriers before it reaches one third of the above-ground barrier height.
- d. Remove trapped sediments from sediment basins and traps when design capacity has been reduced by 50 percent.
- I. If fertilizers are used to establish vegetation, the application rates shall follow manufacturer's guidelines and the application shall be done in a way that minimizes nutrient-laden runoff to receiving waters.
- J. If construction activities cease for 30 days or more, the entire site shall be stabilized using vegetation or a heavy mulch layer, temporary seeding, or another method that does not require germination to control erosion.
- K. Any use of toxic or other hazardous materials shall include proper storage, application, and disposal.
- L. When trucking saturated soils from the site, either watertight trucks shall be used or loads shall be drained on-site until dripping has been reduced to minimize spillage on roads and streets.
- M. Clean all catch basins and inlets protected from sediment prior to paving and final acceptance. The cleaning operation shall not flush sediment laden water into the downstream system.
- N. EPSC measures installed during construction shall be removed when construction and site disturbance activity are complete and permanent soil stabilization is in place.
- O. Remove and dispose of waste and unused building material.

3.3 WET WEATHER CONSTRUCTION

A. The Contractor is responsible for all additional measures required during wet weather construction between October 1st and May 30th.

3.4 PROTECTION OF ADJACENT PROPERTY

A. Protect adjacent properties from land disturbance, erosion, and sedimentation.

3.5 PROTECTION OF JURISDICTIONAL WETLANDS

- A. No work or land disturbance shall occur in jurisdictional wetlands and Clean Water Services vegetated corridors prior to issuance of US Army Corps of Engineers and Oregon Department of State Lands Joint Permit and Clean Water Services Service Provider Letter.
- B. Work shall be completed in compliance with US Army Corps of Engineers and Oregon Department of State Lands Joint Permit and Clean Water Services Service Provider Letter and conditions.

3.6 DISPOSITION OF TEMPORARY MEASURES

EROSION AND SEDIMENT CONTROL

- A. All temporary erosion and sediment control measures shall be disposed of within thirty (30) days after final site stabilization and the establishment of paving and final landscaping.
- B. Trapped sediment and other disturbed soil areas resulting from the disposition of temporary measures shall be permanently stabilized to prevent further erosion.

END OF SECTION 312500

SECTION 321123 – AGGREGATE BASE COURSES

PART 1 - GENERAL

1.1 SUMMARY

A. This section specifies requirements for furnishing and placing base course material composed of crushed aggregate.

1.2 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Related Sections
 - 1. Section 311000 Site Clearing
 - 2. Section 312500 Erosion and Sediment Control
- C. The referenced specification for this Section is the "Oregon Standard Specifications for Construction" latest edition as prepared by the Oregon Department of Transportation and the Oregon Chapter of the American Public Works Association, and its revisions and supplements.

1.3 SUBMITTALS

- A. See section 0133000 Submittals, for submittal procedures.
- B. Materials Sources: Submit name of imported materials source.
- C. Aggregate Composition Test Reports: Results of laboratory test on proposed and actual materials used.
- D. Compaction Density Test Reports.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Aggregate Base Rock:
 - 1. Aggregate base rock below asphalt concrete pavements should be clean, crushed rock or crushed gravel. The base aggregate should contain no deleterious materials, meet specifications provided in ODOT SS 02630.10 Dense-Graded Aggregate, and have less than 5 percent by weight passing the U.S. Standard No. 200 Sieve.

- 2. Base aggregate material shall conform to the requirements of the Standard Specification in areas outside of the public right of way. Refer to the Structural Contract Drawings for additional requirements for aggregate bases under the building.
- B. Certification of Aggregate: Prior to the placing of the aggregate base course material, the Contractor shall produce test results from a certified testing laboratory indicating the suitability of the material.

PART 3 - EXECUTION

3.1 CONSTRUCTION REQUIREMENTS

- A. Aggregate bases shall be placed per the requirements of the Standard Specification and the City of Beaverton Standards.
- B. Compact aggregate base course thoroughly and uniformly to at least 95% of the maximum density as determined by ASTM D1557.

3.2 EQUIPMENT

A. All equipment necessary for the proper construction of this work shall be in first-class working condition before construction is permitted to start, and all other equipment must be able to produce a product meeting the specifications.

3.3 MAINTENANCE

A. Following the completion of the base course, the Contractor shall perform all maintenance work necessary to keep the base course in a condition satisfactory for paving.

3.4 FIELD QUALITY CONTROL

- A. The testing agency shall perform field test in accordance with ASTM D2922 to determine compliance with specified requirements for density and compaction of aggregate base material and with ASTM D3017 to determine moisture-content compliance of the installed base course.
- B. Testing frequency shall be not less than one test for every 2,000 square feet of base course material, per layer or lift.

END OF SECTION 321123

SECTION 321313 – CONCRETE PAVING

PART 1 - GENERAL

1.1 SUMMARY

- A. This Work consists of the construction of Portland cement concrete sidewalks, driveways, and curbs.
 - 1. The Portland cement concrete shall be constructed on a prepared underlying course in accordance with these Specifications and shall conform to the dimensions and typical cross section and with the lines and grades shown on the plans.
 - 2. The referenced specification for this Section is the "Oregon Standard Specifications for Construction" latest edition as prepared by the Oregon Department of Transportation and the Oregon Chapter of the American Public Works Association, and its revisions and supplements.
 - 3. Public Right-of-Way: All public work construction in the public right-of-way shall be in accordance with the applicable requirements of the City of Beaverton Standards and Specifications.
 - 4. All sidewalks and ramps shall be constructed to American's with Disabilities Act (ADA) standards.
- B. Roadways, sidewalks, curbs, and driveways shall be constructed in accordance with this Specification and related Sections, at the respective locations shown on the plans to the lines, grades, dimensions, and designs shown on the plans or established by the Architect.

1.2 RELATED SECTIONS

- A. Section 312000 Earth Moving
- B. Section 312317 Trenching
- C. Section 312500 Erosion/Sedimentation Control
- D. Section 321123 Aggregate Base Courses

1.3 PREINSTALLATION MEETINGS

- A. A pre-installation meeting shall be held on-site.
 - 1. Review methods and procedures related to concrete paving including, but not limited to, the following;
 - a. Review proposed sources of paving material, including capabilities and location of plant that will supply concrete
 - b. Review requirements for protecting paving work, including restriction of traffic during installation period and for the remainder of the construction period.
 - 2. Review concrete forms to ensure ADA tolerances are met.

CONCRETE PAVING

1.4 SUBMITTALS

- A. Include technical data and tested physical and performance properties.
- B. Job-Mix Designs
- C. Material Test Reports
- D. Tactile warning product information
- E. Wheel Stop product information

1.5 FIELD CONDITIONS

- A. Traffic Control: Maintain access for vehicular and pedestrian traffic as required for other construction activities.
- B. Cold-Weather Concrete Placement: Protect concrete work from physical damage or reduced strength that could be caused by frost, freezing, or low temperatures. Comply with ACI 306.1 and the following:
 - 1. When air temperature has fallen to or is expected to fall below 40 deg F, uniformly heat water and aggregates before mixing to obtain a concrete mixture temperature of not less than 50 deg F and not more than 80 deg F at point of placement.
 - 2. Do not use frozen materials or materials containing ice or snow.
 - 3. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators unless otherwise specified and approved in design mixtures.
- C. Hot-Weather Concrete Placement: Comply with ACI 301 and as follows when hot-weather conditions exist:
 - 1. Cool ingredients before mixing to maintain concrete temperature below 90 deg F at time of placement.
 - 2. Cover steel reinforcement with water-soaked burlap, so steel temperature will not exceed ambient air temperature immediately before embedding in concrete.
 - 3. Fog-spray forms, steel reinforcement, and subgrade just before placing concrete. Keep subgrade moisture uniform without standing water, soft spots, or dry areas.

PART 2 - PRODUCTS

2.1 CONCRETE

- A. Concrete Mix Design Constituents shall be per the City of Beaverton Standards and Specifications.
- B. Concrete used under this Section shall have a minimum compressive strength of 4,000psi at 28days per the City of Beaverton Standards and Specifications.

2.2 FORMS

- A. Form Materials: Plywood, metal, metal-framed plywood, or other approved panel-type materials to provide full-depth, continuous, straight, and smooth exposed surfaces.
 - 1. Use flexible or uniformly curved forms for curves. Do not use notched and bent forms.
- B. Form-Release Agent: Commercially formulated form-release agent that will not bond with, stain, or adversely affect concrete surfaces and that will not impair subsequent treatments of concrete surfaces.

2.3 REINFORCEMENT

A. Reinforcement shall be per the details shown on the plans.

PART 3 - EXECUTION

3.1 GENERAL

A. All Work shall comply with Sections 00480 and 00759 of the Standard Specification, and the requirements of the City of Beaverton Standards.

3.2 PREPARATION FOR HANDLING AND PLACEMENT OF CONCRETE

- A. In preparation for placing of concrete, all sawdust, chips, and other construction debris or extraneous matter shall be removed from the interior of the forms or base. Any standing water shall be removed and a firm, stable base verified.
- B. Struts, stays, and braces serving temporarily to hold the forms in the correct shape and alignment prior to the placing of concrete shall be removed when the concrete placing has reached the elevation rendering their service unnecessary. These temporary members shall be entirely removed from the forms and not buried in the concrete.

3.3 PREPARATION OF BASE

A. Areas on which sidewalks, curbs, and driveways are to be constructed shall be brought to proper lines and grade and compaction specified on the Drawings. The base shall be moistened before Portland cement is placed thereon and shall also be moist and firm at the time the concrete is placed.

3.4 JOINING NEW TO EXISTING CONCRETE

A. Construct suitable connections between new and existing concrete where the new construction abuts the existing concrete. Unless shown or directed otherwise, furnish and place minimum 3/4 inch thick preformed expansion joint filler between new and existing concrete.

3.5 REINFORCEMENT, DOWELS AND TIE BARS

- A. Furnish and place reinforcement, dowels and tie bars according to 00755.43 and a shown or directed.
- B. Provide dowels with "slip sleeves" and place as load transfer devised where shown. Place dowels without "slip sleeves" as fastenings or ties between new and existing underlying concrete when shown.

3.6 JOINTS

- A. Expansion Joints –Place expansion joints adjacent to driveway approaches, utility vaults, drainage inlets, sidewalk ramps, curb joints, and at points of tangency, and at spacing not to exceed 200 feet.
- B. Contraction Joints Place contraction joints at 15 foot maximum spacing.

3.7 TESTING AND INSPECTION

A. Slump tests, air entrainment, and cylinder tests may be conducted on poured in place concrete at the frequency determined by the Owner. All tests, initiated by the Owner, will be at the Owner's expense. The Owner will designate an independent testing laboratory, and the contractor shall notify the laboratory 48 hours prior to all pours so that tests can be scheduled and performed.

3.8 CONCRETE CONSOLIDATION

A. Concrete, during and immediately after depositing, shall be thoroughly consolidated. The consolidation shall be done by mechanical means, such as spading, or high frequency vibrators, and shall ensure smooth surfaces and dense concrete along form surfaces or in corners, etc.

3.9 **PROTECTION**

A. The completed concrete surface shall be protected from damage until the project is accepted. The Contractor shall repair damaged concrete and clean concrete discolored during construction. Surfaces that are damaged shall be removed and reconstructed for the entire length between regularly scheduled joints. Refinishing the damaged portion will not be acceptable. Removed portions shall be disposed of off the project site by the Contractor at no additional cost to the Owner.

END OF SECTION 321313

SECTION 334100 – STORM DRAINAGE PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. This section specifies requirements for storm drainage pipe for a gravity flow storm drainage system.

1.2 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specifications Sections, apply to this Section.
- B. Applicable sections of the current Oregon Plumbing Specialty Code, City of Beaverton Standards, and the Clean Water Services Design and Construction Standards.
- C. All work shall be done in accordance with these specifications and in conformity with the plans.
- D. Related Section
 - 1. Section 312317 Trenching
 - 2. Section 334900 Storm Drainage Structures

1.3 SUBMITTALS

A. Product Data.

1.4 DELIVERY, STORAGE AND HANDLING

- A. Do not store plastic pipe and fittings in direct sunlight
- B. Protect pipe, pipe fittings, and seals from dirt and damage.

1.5 QUALITY ASSURANCE

- A. Piping materials shall bear label, stamp, or other marking or specified testing agency.
- B. Comply with NSF/ANSI 14, "Plastic Piping System Components and Related Materials," for plastic piping components. Include marking with "NSF-drain" for plastic drain piping and "NSF-sewer for plastic sewer piping.

1.6 PROJECT CONDITIONS

- A. Interruption of Existing Storm-Drainage Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:
 - 1. Notify Owner no fewer than two days in advance of proposed interruption of stormdrainage service.
 - 2. Do not proceed with interruption of storm-drainage service without Owner's written permission.

PART 2 - PRODUCTS

2.1 STORM DRAINAGE PIPING 4" AND LARGER WITH GREATER THAN 3 FEET OF COVER, BEYOND 5 FEET FROM THE BUILDING

- A. PVC Pipe and Fittings
 - 1. Pipe: Shall conform to the requirements of ASTM D3034, SDR 35
 - 2. Fittings: All fitting shall be of the same materials as the pipe unless otherwise approved. Conform to the requirements of ASTM D3034, PVC
 - 3. Gaskets: Shall conform to the requirements of ASTM F 477, elastomeric seals and ASTM 3212
- B. PE Pipe and Fittings
 - 1. Corrugated PE Pipe and Fittings Pipe: Shall conform to the requirements of ASTM D3350
- C. HDPE Pipe and Fittings
 - 1. All HDPE Pipe and Fittings shall conform to the requirements of ASTM F714, DR 26

2.2 STORM DRAINAGE PIPING 4" AND LARGER WITH 3 FEET OR LESS OF COVER, BEYOND 5 FEET FROM THE BUILDING

- A. Ductile Iron, Gravity Sewer Pipe and Fittings
 - 1. Pipe: AWWA C150-1, cement lined push-on joint. Class 50.
 - 2. Standard Fittings: AWWA C110, ductile or gray iron, for push-on joints.
 - 3. Compact Fittings: AWWA C153, ductile iron, for push-on joints.
 - 4. Gaskets: AWWA C111, rubber

2.3 STORM DRAINAGE PIPING WITHIN 5 FEET OF THE BUILDING

- A. PVC Pipe and Fittings
 - 1. PVC DWV, Solid-Wall PVC Pipe shall conform to the requirements of ASTM D 2665, and plumbing code requirements

2.4 PERFORATED PIPE

A. Rigid round perforated PVC pipe shall conform to the requirements of ASTM D3034, SDR 35.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Excavation, trenching, and backfilling are specified in section 312317 Trenching.

3.2 PIPING INSTALLATION

- A. General location and arrangements: Drawing plans and details indicate general location and arrangement of underground storm drainage piping. Location and arrangement of piping layout tack into account design considerations. Install pipe as indicated, to extent practical. Where specific installation is not indicated, follow piping manufacturer's written instructions.
- B. Install piping beginning at low point, true to grades and alignment indicated with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves and couplings according to manufacturer's written instruction for using lubricants, cements, and other installation requirements.
- C. Clear interior of piping and manholes of dirt and superfluous material as work progresses. Maintain swab or drag in piping and pull past each joint as it is complete. Place plug in end of incomplete piping at end of day and when work stops.

3.3 CLEANOUT

A. Install cleanout where indicated on the plans. Set rim to finish grade.

3.4 CONNECTIONS

A. Pothole prior to construction to verify location, size, and depth of existing piping. Notify Engineer if location, size, or depth of existing pipe is different than shown on the plans.

3.5 FIELD QUALITY CONTROL

A. Inspection and testing shall be per City of Beaverton and Clean Water Services Standards.

3.6 CLEANING

A. Clean dirt and superfluous material from interior of piping prior to testing.

END OF SECTION 334100

STORM DRAINAGE PIPING

SECTION 334900 – STORM DRAINAGE STRUCTURES

PART 1 - GENERAL

1.1 SUMMARY

A. This section specifies requirements for storm drainage structures for a gravity flow drainage system.

1.2 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specifications Sections, apply to this Section.
- B. Applicable sections of the current Oregon Plumbing Specialty Code, City of Beaverton Design Manual and Standard Drawings, and the Clean Water Services Design and Construction Standards.
- C. All work shall be done in accordance with these specifications and in conformity with the plans.
- D. Section 334100 Storm Drainage Piping.

1.3 SUBMITTALS

A. Product Data.

1.4 DELIVERY, STORAGE AND HANDLING

- A. Do not store plastic pipe and fittings in direct sunlight.
- B. Protect pipe, pipe fittings, and seals from dirt and damage.

1.5 QUALITY ASSURANCE

- A. Piping materials shall bear label, stamp, or other marking or specified testing agency.
- B. Comply with NSF/ANSI 14, "Plastic Piping System Components and Related Materials," for plastic piping components. Include marking with "NSF-drain" for plastic drain piping and "NSF-sewer for plastic sewer piping.

1.6 PROJECT CONDITIONS

- A. Interruption of Utility Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:
 - 1. Notify Owner no fewer than two days in advance of proposed interruption of storm drainage service.

PART 2 - PRODUCTS

- 2.1 Polyvinyl Chloride Pipe (PVC)
 - A. Pipe and Fittings 4 inches to 15 inches shall be PVC SDR 35, conforming to ASTM D3034.
 - **B**. Joints: PVC pipe shall have integral wall bell and spigot push-on joint with elastomeric gaskets secured in place in the bell of the pipe. Elastomeric gaskets shall conform to ASTM D3212.
- 2.2 Cleanouts
 - A. Cleanout components shall conform to Clean Water Services and City of Beaverton Standards.
 - **B**. Cleanout stand pipe shall be the same material and size as the mainline, up to and including 8 inch pipe. Mainline greater than 8 inches shall have an 8 inch standpipe.
 - C. Cleanout frame and cover shall have a concrete collar.
 - D. Cleanouts shall have a gas and watertight threaded plug in conformance with Plumbing Code.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Excavation, trenching, and backfilling are specified in section 312317 Trenching.

3.2 CLEANOUT INSTALLATION

- A. General: Install cleanout complete with appurtenances and accessories indicated, and in conformance with the City of Beaverton and Clean Water Services Standards.
- B. Install cleanouts where indicated on the drawings and per Oregon Plumbing Specialty Code.

ACMA SHED BEAVERTON SCHOOL DISTRICT

3.3 CONNECTIONS

A. Pothole prior to construction to verify location, size and depth of existing piping. Notify Engineer if location, size, or depth of existing pipe is different than shown on the plans.

3.4 FIELD QUALITY CONTROL

A. Inspection shall be per the City of Beaverton and Clean Water Services Standards.

3.5 CLEANING

A. Clean dirt and superfluous material from interior of piping prior to testing.

3.6 TESTING AND ACCEPTANCE

A. Testing shall be in conformance with the City of Beaverton, Clean Water Services Standards, and Oregon Plumbing Specialty Code.

END OF SECTION 334900

6111 GEOTECHNICAL RPT

9750 SW Nimbus Avenue Beaverton, OR 97008-7172 p | 503-641-3478 f | 503-644-8034

June 25, 2018

Beaverton School District 16550 SW Merlo Road Beaverton, OR 97006

Attention: Leslie Imes

SUBJECT: Geotechnical Investigation and Site-Specific Seismic Hazard Study Beaverton School District Arts and Communications Magnet Academy 11375 SW Center Street Beaverton, Oregon

At your request, GRI completed a geotechnical investigation for the proposed improvements to the Arts and Communications Magnet Academy (ACMA), located in Beaverton, Oregon. The general location of the site is shown on the Vicinity Map, Figure 1. The investigation was conducted to evaluate subsurface conditions at the site and to develop recommendations for design and construction of the site development including: earthwork, subsurface drainage, excavations, and design and construction of foundations, retaining walls, pavements, and stormwater facilities. Our investigation included a review of available geologic information for the site, subsurface explorations, laboratory testing, and engineering analyses. As part of our investigation, GRI completed a site-specific seismic hazard evaluation to satisfy the requirements of the 2012 International Building Code (IBC), which was adopted by the 2014 Oregon Structural Specialty Code (OSSC). This report describes the work accomplished and provides our conclusions and recommendations for design and construction of the project.

BACKGROUND INFORMATION

GRI reviewed available geotechnical information at the project site as part of this investigation. GRI previously completed a Phase II Environmental Site Assessment on the ACMA campus, which is summarized in our September 19, 2016, report to Beaverton School District, titled, "Phase II Environmental Site Assessment, Arts and Communications Magnet Academy (ACMA), 11375 SW Center Street, Beaverton, Oregon."

In addition, GRI reviewed GeoDesign, Inc.'s, August 15, 2007, report to the Beaverton School District completed at the project site, titled, "Report of Geotechnical Engineering Services, Proposed Arts and Communication Magnet Academy Improvements, 11375 SW Center Street, Beaverton, Oregon."

PROJECT DESCRIPTION

The Beaverton School District plans to construct a new 80,000-sq-ft, two-story, steel classroom building within the central portion of the existing school property. The new structure is planned east of the auditorium/theatre building. We understand the existing auditorium/theatre building will remain in its current configuration. All other existing buildings will be demolished as part of this project. The project architect and structural engineer, DLR Group, indicated the new building will have maximum column and wall loads of about 260 kips and 1.5 kips/ft, respectively. The existing parking lot on the east side of the

school will be demolished and expanded slightly to the west towards the new building. A new parking lot is also planned to the south of the proposed building. On-site disposal of stormwater is being considered through shallow infiltration facilities being considered within the northern, eastern, and southern portions of the site. The locations of the planned improvements, which are based on conceptual plans provided by DLR Group, are shown on the Site Plan, Figure 2, with the exception of the locations of infiltration facilities. We anticipate the new improvements will be established at or near existing site grades, and cuts and fills to establish grades across the site will be minimal.

SITE DESCRIPTION

Topography and Surface Conditions

The ACMA campus is bordered by CE Mason Wetlands Park to the north, SW 13th Avenue to the east, SW Center Street to the south, and residential apartments to the west. Based on review of the existing conditions survey, the ground surface generally slopes downward gradually from about elevation 219 ft near the northeast corner of the site to about elevation 196 ft near the southwest corner of the site. All elevations noted in this report reference the North American Vertical Datum of 1988 (NAVD 88).

The campus consists of several one-story buildings spread out across the site. The existing auditorium/theatre building is located towards the southwest portion of the site. The main school building forms an approximate L-shape to the east of the auditorium/theatre building. An asphalt concrete (AC)-paved courtyard is located near the center of the site. The northwestern and eastern sides of the site are currently being used as AC-surfaced parking lots. An AC-surfaced access drive is located along the southern and western sides of the site. The northwestern portion of the site is currently a grass field.

Geology

Near-surface soils at the site are mapped as catastrophic flood deposits derived from the Missoula glacial outburst floods (Madin et al., 2006). The flood deposits in the project area consist primarily of silt with varying percentages of clay and fine-grained sand and are referred to as Willamette Silt. The Hillsboro Formation, which consists of clay with variable silt and sand content, underlies the Willamette Silt. Based on our experience in the project area, the Hillsboro Formation is present at depths of 20 to 25 ft in the vicinity of the project.

SUBSURFACE CONDITIONS

General

Subsurface materials and conditions at the site were investigated on May 29 and 30, 2018, with seven borings designated B-1 through B-7, and one cone penetration test (CPT) probe designated CPT-1. The borings were advanced to depths of 5.5 to 41.5 ft, and the CPT probe was advanced to a depth of about 71.7 ft. The approximate locations of the explorations are shown on the Site Plan, Figure 2. A detailed discussion of the field exploration and laboratory testing program for this investigation are described in Appendix A. Logs of the explorations are provided on Figures 1A through 8A. The terms and symbols used to describe the soils encountered in the borings are defined in Table 1A and the attached legend. The terms used for the classification of soil in the CPT are provided in Table 2A.

Soils

For the purpose of discussion, the materials disclosed by the borings have been grouped into the following major categories based on their physical characteristics and engineering properties. The data from the CPT

soundings were also reviewed, and the depths and consistencies of each of the major categories were generally consistent with the conditions encountered in the borings.

- 1. PAVEMENT
- 2. SILT (Fill)
- 3. SILT (Willamette Silt)
- 4. Silty CLAY (Hillsboro Formation)

1. PAVEMENT. Borings B-4 through B-6 were drilled through the existing AC-surfaced courtyard and encountered 4 in. of AC pavement underlain by 6 in. of crushed-rock base course (CRB).

2. SILT (Fill). Silt fill was encountered at the ground surface in boring B-1 and extends to the maximum depth explored in the boring of 5.5 ft. The silt fill is brown and contains trace to some clay and a trace of finegrained sand. Gravel and concrete fragments were encountered in the silt fill. Standard Penetration Test (SPT) N-values of 7 and 10 blows/ft indicate the relative consistency of the silt fill is medium stiff to stiff. The moisture content of the fill ranges from about 26 to 33%.

3. SILT (Willamette Silt). Silt soils of the Willamette Silt Formation were encountered at the ground surface in borings B-2, B-3, and B-7, and beneath the pavement in borings B-4 through B-6, and extends to depths ranging from 5.5 to 22.5 ft. Borings B-3, B-6, and B-7 were terminated in the silt at a depth of 5.5 ft. The silt soils are primarily brown and include varying percentages of clay and fine-grained sand, ranging from a trace of clay to clayey and up to some fine-grained sand. The silt in borings B-3 and B-7 contains roots. SPT N-values ranging from about 2 to 11 blows/ft, Torvane shear strength values ranging from 0.25 to 0.55 tsf, and CPT tip resistances of 6 to 60 tsf indicate the relative consistency of the silt ranges from soft to stiff and is typically medium stiff. The natural moisture content of the silt ranges from about 28 to 41%. Atterberg limits testing was performed on three selected samples of the silt and the results are summarized on the Plasticity Chart, Figure 9A, and in Table 3A in Appendix A. Atterberg limits testing on the silt samples indicates the silt has a liquid limit ranging from about 27 to 32% and a plasticity index ranging from about 2 to 7%, which indicates the silt has a low to moderate plasticity. Shear-wave velocity measurements recorded in the silt in CPT-1 range from about 602 ft/second at a depth of about 6.6 ft below the ground surface to a maximum of about 898 ft/second at a depth of about 19.7 ft.

Consolidation tests were conducted on samples of silt from depths of about 7.5 and 11.5 ft in borings B-4 and B-2, respectively. Test results indicate the soil is heavily overconsolidated and has a low compressibility in the preconsolidated range of stresses and a moderate compressibility in the normally consolidated range of stresses, see Figures 10A and 11A.

4. CLAY (Hillsboro Formation). Clay of the Hillsboro Formation was encountered beneath the silt in borings B-2, B-4, and B-5 at depths ranging from 20.8 to 22.5 ft, and extends to the maximum depths explored in the borings ranging from 40 to 41.5 ft. The clay also extends to the maximum depth explored in CPT-1 of 71.7 ft. The clay is generally brown to gray with yellow-brown and black mottling and contains a variable silt and sand content that ranges from some silt to silty and trace to some fine- to coarse-grained sand. Layers of sand and silty sand were encountered within this unit below a depth of about 55 ft in the CPT probe. SPT N-values ranging from 5 to 27 blows/ft, Torvane shear strength values ranging from 0.50 to 0.55 tsf, and CPT tip resistances of 18 to greater than 60 tsf indicate the general consistency of the clay is medium stiff to very

stiff. The natural moisture of the clay ranges from about 22 to 35%. Atterberg limits testing was performed on a selected sample of clay and the results are summarized on Figure 9A and in Table 3A. Atterberg limits testing on the sample of clay indicates the clay soil has a liquid limit about 47% and a plasticity index of 30%, indicating the clay has high plasticity. Shear-wave velocity measurements recorded in the clay in CPT-1 were at least 800 ft/second and generally increased with depth.

Groundwater

Groundwater was encountered at depths between about 9.9, 10, and 11.6 ft in borings B-2, B-4, and B-5 at the time of drilling. Groundwater was not encountered in the remaining borings. We anticipate static groundwater levels at the site are generally at a depth of about 10 ft below the existing ground surface; however, localized perched conditions may occur at shallower depths in the fill and silt during periods of heavy or prolonged rainfall.

Infiltration Testing

Falling head infiltration testing was completed on May 30, 2018, using the encased falling head infiltration method. The tests were conducted in shallow borings B-1, B-3, B-6, and B-7 at a depth of about 5.5 ft below the ground surface. Details of the infiltration testing methods are provided in Appendix A. GRI did not observe a measureable drop in water level in borings B-3, B-6, and B-7 over the course of testing. In boring B-1, the average rate of infiltration over the final test was observed to be about 0.1 in./hour.

CONCLUSIONS AND RECOMMENDATIONS

General

The explorations made for this investigation indicate the site is typically mantled by medium-stiff silt that is underlain by stiff to very stiff clay. Localized zones of fill may be present across portions of the site. Groundwater was encountered at depths of about 9.9 to 11.6 ft during drilling and we anticipate perched groundwater conditions may approach the ground surface following periods of heavy or prolonged precipitation and during the wet months, which is common during seasonally high precipitation from late fall through early spring.

In our opinion, foundation support for the new building can be provided by conventional spread and wall foundations established in firm, undisturbed native soil or compacted structural fill. The primary geotechnical considerations associated with the proposed improvements include the presence of fine-grained soils that are sensitive to moisture content and are easily disturbed by construction activities and shallow groundwater conditions likely present over portions of the year. The following sections of this report provide our conclusions and recommendations for earthwork and design and construction of foundations.

Site Preparation and Grading

Demolition of the existing buildings and improvements within the limits of the new structures, retaining walls, and paved areas should include the removal of existing pavements, floor slabs, foundations and walls, underground utilities, and associated unsuitable backfill. Excavations made during demolition to remove existing improvements should be backfilled with structural fill. Any soil disturbed during the demolition process should be removed and replaced with structural fill.

In unimproved areas, the ground surface within areas of mass grading or within the limits of proposed structures, retaining walls, hardscape, or pavements should be stripped of vegetation, surface organics, and loose surface soils. Strippings will not be suitable for use as structural fill and should be disposed of off site or used in landscape areas. We anticipate the average stripping depth will be on the order of 4 to 6 in. to remove the surface organics. Deeper grubbing will be necessary to remove stumps and heavy tree roots.

Following stripping, grubbing, or excavation to subgrade level, the exposed subgrade should be evaluated by a member of GRI's engineering staff. Proof rolling with a loaded dump truck may be included as part of the evaluation. Soft areas should be overexcavated and replaced with structural fill as described below. During and following stripping and excavation, the subcontractor must use care to protect the subgrade from disturbance by construction traffic, particularly during wet weather. Areas of soft subgrade, unsuitable fill, or otherwise unsuitable materials should be overexcavated to firm soil and backfilled with structural fill. Due to the moisture-sensitive nature of the fine-grained silt soils that mantle the site, site preparation and earthwork phases of this project should be accomplished during the dry summer months, typically extending from June to mid-October. Our experience indicates the moisture content of the upper 2 to 4 ft of the silt soils will decrease during warm, dry weather. However, below this depth, the moisture content tends to remain relatively unchanged and well above the optimum moisture content for compaction. As a result, the contractor must employ construction techniques that prevent or minimize disturbance and softening of the subgrade soils. The use of a track-mounted excavator equipped with a smooth-edged bucket for excavation with the concurrent placement of granular work pads tends to minimize the potential for subgrade disturbance. If the subgrade is disturbed during construction, soft, disturbed soils should be overexcavated to firm soil and backfilled with structural fill.

Due to the potential of perched and relatively shallow groundwater conditions across the site, it should be anticipated that wet soils with associated seepage may occur in most cut areas. The silt soils, when saturated, are typically easily disturbed and become unstable under most construction traffic and difficult to place and compact as structural fill.

To prevent disturbance and softening of the fine-grained subgrade soils during wet weather or ground conditions, the movement of construction traffic should be limited to granular haul roads and work pads. In general, a minimum of 18 to 24 in. of relatively clean, granular material is required to support concentrated construction traffic, such as dump trucks and concrete trucks, and protect the subgrade. A 12-in.-thick granular work pad should be sufficient to support occasional light truck traffic and low-volume construction operations. We recommend placement of a woven geotextile separation fabric on the exposed subgrade prior to placement and compaction of the granular work pad.

Permanent cut and fill slopes should be constructed at 2H:1V (Horizontal to Vertical) or flatter. Temporary cut slopes up to about 10 ft tall should be 1H:1V or flatter, and temporary cut slopes greater than 10 ft tall should be 1.5H:1V or flatter. If temporary and permanent slopes cannot be maintained due to existing or planned improvements, GRI should be contacted to provide shoring recommendations.

Structural Fill

General. All fill within building, hardscape, pavement, and retaining wall areas should be placed as compacted structural fill. The structural fill should extend at least 4 and 2 ft beyond the building and pavement limits, respectively. All structural fill materials should be compacted to at least 95% of the

maximum dry density and at a moisture content within about 3% of optimum, as determined by ASTM International (ASTM) D698. The optimum moisture content varies with gradation and should be evaluated during construction by performing ASTM D698 laboratory testing on fill material used for the project. Fill material that is not near the optimum moisture content should be moisture-conditioned prior to compaction. Coarse, granular fill should be compacted until well-keyed. No brush, roots, construction debris, or other deleterious material should be placed within the structural fills. The earthwork contractor's compactive effort should be evaluated on the basis of field observations, and lift thicknesses should be adjusted accordingly to meet compaction specifications. GRI's geotechnical engineering staff should evaluate compaction of each lift of the structural fill. Recommendations for structural fill are provided in the following sections.

On-Site Soils. Unless an admixture such as lime or cement is used, the on-site soils can only be used to construct structural fills during warm, dry weather. The natural moisture content of the on-site soils will likely exceed the optimum moisture content throughout the majority of the year; hence, some drying will be required to meet the above requirements for proper compaction even during the summer months. The required drying can best be accomplished during dry weather by spreading and aerating the material in thin lifts. Fine-grained soils should be placed in lifts less than 9 in. thick and compacted with segmented-pad rollers. Hand-operated tamping units should be used adjacent to embedded structures and in confined areas.

Granular Fill. Imported granular fill materials used as structural fill should consist of sand, gravel, or fragmental rock with a maximum size on the order of 3 in. and with not more than 5% passing the No. 200 sieve (washed analysis). Granular structural fill should be limited to a maximum size of about 1¹/₂ in. when used as utility backfill or compacted with hand-operated equipment. Material satisfying these requirements can usually be placed during periods of wet weather. The first lift of granular fill placed over a fine-grained subgrade should be about 18 in. thick and subsequent lifts about 12 in. thick when using medium- to heavy-weight vibratory rollers. We recommend limiting lift thicknesses to less than 8 in. when using hand-operated vibratory plates.

Free-Draining Fill. Free-draining material should have less than 2% passing the No. 200 sieve (washed analysis). Examples of materials that would satisfy this requirement include ³/₄- to ¹/₄-in. or 1¹/₂- to ³/₄-in. crushed drain rock.

Foundation Support

As previously indicated, the maximum total column and wall loads for the new building will be on the order of 260 kips and 1.5 kips/ft, respectively. In our opinion, foundation support for the building can be provided by conventional column and continuous wall footings using an allowable bearing value of 2,500 psf. This bearing pressure has a factor of safety of at least 3 against a bearing capacity failure and assumes the foundation is founded on firm native or engineered fill consisting of on-site silt soil or imported granular material. This value applies to the total of dead load and/or frequently applied live loads and can be increased by one-half for the total of all loads: dead, live, and wind or seismic.

Spread and wall footings should be established in firm, undisturbed native soil or compacted structural fill at a minimum depth of 18 in. below the lowest adjacent finished grade. The footing width should not be less than 24 in. for isolated column footings and 18 in. for wall footings. Excavations for all foundations should be made with a smooth-edged bucket, and all footing excavations should be observed by personnel from GRI. Soft or otherwise unsuitable material encountered at foundation subgrade level should be

overexcavated and backfilled with granular structural fill. We recommend installing a minimum 3-in.-thick layer of compacted crushed rock in the bottom of all footing excavations to protect the subgrade from disturbance or softening during construction.

We estimate the total settlement of spread footings will be less than 1 in. for footings supporting column and wall loads of up to 260 kips and 1.5 kips/ft, respectively. Differential settlement between adjacent comparably loaded footings should be less than half the total settlement.

Horizontal shear forces can be resisted partially or completely by frictional forces developed between the base of spread footings and the underlying soil. The total shearing resistance between the foundation footprint and the soil should be taken as the normal force, i.e., the sum of all vertical forces (dead load plus real live load) times the coefficient of friction between the soil and the base of the footing. We recommend an ultimate value of 0.40 and 0.30 for the coefficient of friction for footings cast on a minimum of 6 in. of granular structural fill or firm silt subgrade, respectively. If additional lateral resistance is required, passive earth pressures against embedded footings can be computed on the basis of an equivalent fluid having a unit weight of 250 pcf. This design passive earth pressure would be applicable only if the footing is cast neat against undisturbed soil, or if backfill for the footings is placed as granular structural fill. This value also assumes the ground surface in front of the foundation is horizontal, i.e., does not slope downward away from the toe of the footing.

Subdrainage and Floor Support

Building slab-on-grade floors established at or above adjacent final site grades should be underlain by a minimum 8 in. of free-draining, clean, angular rock to provide a capillary break and reduce the risk of damp floors. This material should consist of angular rock, such as 11/2- to 3/4-in. crushed rock, with less than 2% passing the No. 200 sieve (washed analysis), and should be placed in one lift and compacted to at least 95% of the maximum dry density as determined by ASTM D698, or until well-keyed. The free-draining rock can be capped with 2 in. of compacted 3/4-in.-minus crushed rock to provide a more stable working surface. In areas where floor coverings will be provided or moisture-sensitive materials are stored, it would be appropriate to also install a vapor-retarding membrane. The membrane should be installed as recommended by the manufacturer. In addition, a foundation drain should be installed around the building perimeter to collect water that could potentially infiltrate beneath the foundations and should discharge to an approved storm drain.

Structures established below final site grades should be provided with a subdrainage system to reduce hydrostatic pressure and the risk of groundwater entering through embedded walls and floor slabs. Typical subdrainage details for embedded structures are shown on Figure 3. The figure shows peripheral subdrains to drain embedded walls and an interior granular drainage blanket beneath the concrete floor slab, which is drained by a system of subslab drainage pipes. All groundwater collected should be drained by gravity or pumped from sumps into the storm sewer system. If the water is pumped, an emergency power supply should be included to prevent flooding due to a power loss.

To evaluate isolated point loading on the floor slabs, it is our opinion a coefficient of subgrade reaction, k, of about 175 pci is appropriate to characterize the subgrade support with a minimum 8 in. of compacted crushed rock beneath the slabs.

Lateral Earth Pressures

Design lateral earth pressures against the walls of embedded structures or retaining walls depend on the drainage condition provided behind the wall and the type of construction, i.e., the ability of the wall to yield. The two possible conditions regarding drainage include providing drainage to the area behind the embedded wall or designing the structure to be watertight. In the event that structures are designed to be watertight, it should be assumed the water table can rise to the ground surface at the site.

The two possible conditions regarding the ability of the wall to yield include the at-rest and active earth pressure cases. The at-rest earth pressure case is applicable to a wall that is relatively rigid and laterally supported at the top and bottom and therefore unable to yield, such as a basement wall with the top of the wall tied to the building floor slab. The active earth pressure case is applicable to a wall capable of yielding slightly away from the backfill by either sliding or rotating about its base, such as a conventional cantilevered retaining wall.

Assuming the top of the backfill will be horizontal and the backfill completely drained, yielding and non-yielding walls can be designed on the basis of a hydrostatic pressure based on an equivalent fluid unit weight of 35 and 55 pcf, respectively. A uniform vertical surcharge pressure of 250 psf should be assumed for construction equipment in the backfill area. Additional loading due to surcharge loads should be added in accordance with the criteria shown on Figure 4.

Seismic loading on retaining walls depends on the type of wall and construction techniques. The Agusti and Sitar (2013) method was used to develop the seismically induced lateral earth pressures. The method applies a triangular lateral earth pressure distribution with a pressure of 0H (psf) at the ground surface and a maximum pressure of 7H and 16H (psf) for yielding and non-yielding walls, respectively, at the base of the wall, where H is the height of the wall. These pressures assume the backfill behind the structure is horizontal. The resultant force acts at a point above the base of the wall equal to one-third of the wall height.

Drainage for walls should be provided by a perforated drain pipe located at the bottom of the backfill to drain all groundwater by gravity, or pumped from sump pits into the storm sewer system. Wall backfill should consist of clean, granular, structural fill material compacted to about 95% of the maximum dry density determined by ASTM D698. A 2-ft-thick blanket of open-graded drain rock with less than about 2% passing the No. 200 sieve (washed analysis) should be placed against the wall. A geotextile separation fabric should be installed between the drainage blanket and the general wall backfill. Overcompaction of backfill behind the walls should be avoided. Heavy compactors and large pieces of construction equipment should not operate within 4 ft of any embedded walls. As an alternative approach, wall drainage can be provided by the installation of commercially available drainage layer material on embedded walls. Drainage strips that are 18 in. wide and installed at a center-to-center spacing of 8 ft would be suitable for this purpose.

Where it is not practical to drain the backfill for structures such as utility vaults, and where the embedded walls will be designed to be watertight, yielding and non-yielding walls can be designed for a hydrostatic pressure based on an equivalent fluid unit weight of 80 and 90 pcf, respectively. These pressures assume the backfill behind the structure is horizontal. A watertight structure should also be designed to resist buoyancy. A common method used to resist buoyancy is to increase the thickness of the base slab beyond the sidewall of the structure. The forces resisting uplift would include the weight of the structure as well as the buoyant weight of the backfill material placed directly over the portion of the

base slab that extends beyond the wall of the structure. The effective weight of submerged backfill should be evaluated using a buoyant unit weight of 63 pcf, which assumes all backfill consists of granular material.

Utilities

In our opinion, there are four major considerations associated with design and construction of new utilities:

- 1) Provide stable excavation side slopes or support for trench sidewalls to minimize loss of ground.
- 2) Provide a safe working environment during construction.
- 3) Minimize post-construction settlement of the utility and ground surface.
- 4) Presence of fill in trench excavations.

The method of excavation and design of trench support are the responsibility of the contractor and subject to applicable local, state, and federal safety regulations, including the current Occupational Safety and Health Administration (OSHA) excavation and trench safety standards. The means, methods, and sequencing of construction operations and site safety are also the responsibility of the contractor. The information provided below is for the use of our client and should not be interpreted to mean we are assuming responsibility for the contractor's actions or site safety. All excavations should be sloped or properly shored. Groundwater seepage, running soil conditions, and unstable trench sidewalls or soft trench subgrades, if encountered, will require dewatering of the excavation and trench sidewall support. The impact of these conditions can be minimized by completing trench excavation during the summer months when groundwater levels are lowest, and by minimizing the depth of the trenches. Some overexcavation of the trench bottom. Clean, 4-in.-minus crushed rock over a geotextile fabric is typically used for this purpose. The actual required depth of overexcavation will depend on the contractor's method of operation and the conditions encountered, and should be established at the time of construction. We anticipate groundwater inflow, if encountered, can generally be controlled by pumping from sumps.

Backfill placed in utility trench excavations within the limits of the pavements or structures should consist of sand, sand and gravel, or crushed rock with a maximum size of up to 1¹/₂ in. and not more than 5% passing the No. 200 sieve (washed analysis). The granular backfill should be compacted to at least 95% of the maximum dry density as determined by ASTM D698. The use of excavator-mounted vibratory plate compactors (hoe-packs) is typically most efficient for compaction of trench backfill. Lift thicknesses should be evaluated on the basis of field density tests; however, particular care should be taken when operating excavator-mounted compactors to prevent damage to the newly placed utilities. Flooding or jetting the backfilled trenches with water to achieve the recommended compaction should not be permitted.

Pipes should be underlain by a minimum 6-in. thickness of good-quality bedding material. We recommend the bedding material and any pipe zone backfill consist of clean (not more than about 5% passing the No. 200 sieve, washed analysis), ³/4-in.-minus crushed rock. The bottom of the excavation should be thoroughly cleaned to remove loose materials before installing the bedding material.

Pavement Design

General. We anticipate the existing parking lot on the eastern side of the school will be demolished and widened to the west towards the new building. In addition, a new parking lot is planned south of the proposed building. Specific information regarding the anticipated vehicle traffic (i.e., type and number) was not available at the time of our pavement evaluation. We have assumed the parking lots and driveway areas will be primarily subjected to automobile traffic. We anticipate portions of the pavement will be subjected to occasional heavy truck traffic, such as delivery and garbage trucks. In addition, portions of the pavement may also be subjected to school bus traffic. Based on our experience with similar projects and subgrade materials, we recommend the following pavement sections:

	Crushed-Rock Base Thickness, in.	AC Thickness, in.
Areas Subjected to School Bus Traffic	14	5
Areas Subjected to Occasional Heavy Truck Traffic	12	4
Areas Subject Primarily to Automobile Traffic and Parking	8	3

A geotextile fabric should be placed on the exposed subgrade prior to placement of the CRB unless the subgrade soil is cement treated.

The recommended pavement sections should be considered minimum thicknesses, and it should be assumed some maintenance will be required over the life of the pavement (15 to 20 years). These sections are based on the assumption that pavement construction will be accomplished during the dry season and after construction of the buildings has been completed. If wet-weather pavement construction is considered, it will likely be necessary to increase the thickness of the CRB to support construction equipment and protect the subgrade from disturbance. The recommended pavement sections are not intended to support extensive construction traffic, such as dump trucks and concrete trucks. Pavements subject to construction traffic may require repair.

For the recommended pavement sections, drainage is an essential aspect of pavement performance. We recommend all paved areas be provided with positive drainage to remove surface water and water within the base course. This will be particularly important in cut sections or at low points within the paved areas, such as at catch basins. Effective methods to prevent saturation of the base course materials include providing weep holes in the sidewalls of catch basins, subdrains in conjunction with utility excavations, and separate trench drain systems. We recommend the pavement work conform to Oregon Department of Transportation standards.

Prior to placing base course materials, all pavement subgrades should be evaluated by a member of GRI's engineering staff. This evaluation may include a proof roll with a fully loaded, 10-cy dump truck. Any soft areas detected during the evaluation should be overexcavated to firm ground and backfilled with compacted structural fill.

Provided the pavement sections supporting occasional heavy truck traffic or school buses are installed in accordance with the recommendations provided above, it is our opinion these pavement areas can support

infrequent traffic by an emergency vehicle having a gross vehicle weight (GVW) of up to 75,000 lbs. For the purposes of this evaluation, "infrequent" can be defined as once a month or less.

On-Site Disposal of Stormwater

Falling head infiltration tests were completed at a depth of about 5.5 ft in standpipes installed in borings B-1, B-3, B-6, and B-7 to obtain infiltration rates to evaluate on-site disposal of stormwater. As previously mentioned, no observable drop in water was observed in borings B-3, B-6, and B-7 during the testing and the infiltration rate in boring B-1 was about 0.1 in./hour. Based on the results of the infiltration testing, it is our opinion on-site infiltration of stormwater is not appropriate for the site.

Seismic Considerations

Code-Based Seismic Design Parameters. We understand the project will be designed in accordance with the 2012 IBC with the 2014 OSSC modifications. Seismic design in the 2012 IBC is based on the American Society of Civil Engineers (ASCE) Document 7-10, Minimum Design Loads for Buildings and Other Structures (ASCE 7-10). GRI completed a site-specific seismic hazard study in accordance with the 2012 IBC and 2014 OSSC. The results of our site-specific seismic hazard evaluation and recommended response spectrum for design are provided in Appendix B.

The IBC design methodology uses two spectral response coefficients, S_S and S₁, corresponding to periods of 0.2 and 1.0 second, to develop the Risk-Targeted Maximum Considered Earthquake (MCE_R) structural response spectrum. The spectral response coefficients were obtained from the U. S. Geological Survey (USGS) Hazard Response Spectra Curves for the coordinates of 45.4948° N latitude and 122.7942° W longitude. The S_S and S₁ coefficients are 1.00 and 0.43 g, respectively. These spectral response coefficients are then adjusted for Site Class with the 0.2- and 1.0-second period site coefficients, F_a and F_v. In accordance with ASCE 7-10 Sections 20.3.1 and 20.4, the site is designated Site Class D. The 0.2- and 1.0-second period site coefficients, F_a and F_v, are 1.10 and 1.57, respectively, for Site Class D. The design-level response spectrum is calculated as two-thirds of the Site Class-adjusted MCE_R-level spectrum. The MCE_R-level and design-level response spectra coefficients are presented in the following table.

Seismic Variable	Recommended Value
Site Class	D
MCER 0.2-Second Period Spectral Response Acceleration, Sms	1.10 g
MCEr 1.0-Second Period Spectral Response Acceleration, Sm1	0.68 g
Design-Level 0.2-Second Period Spectral Response Acceleration, Sps	0.73 g
Design-Level 1.0-Second Period Spectral Response Acceleration, Sp1	0.45 g

2012 IBC AND 2014 OSSC SEISMIC DESIGN RECOMMENDATIONS

. .

Liquefaction and Cyclic Softening. Liquefaction is a process by which loose, saturated, granular materials, such as sand, and to a somewhat lesser extent, soft to medium-stiff, non-plastic and low-plasticity silts, temporarily lose strength during and immediately after a seismic event. Cyclic softening describes a relatively gradual and progressive increase in shear strain that occurs in normally consolidated to slightly

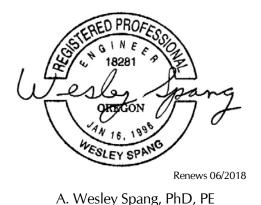
overconsolidated moderate-plasticity silts and clays as a result of seismic loading. Cyclic softening may result in elevated pore water pressures and a reduction of shear strength of sensitive silts and clays.

The potential for liquefaction and cyclic softening/failure potential of the fine-grained soils at the site was assessed using procedures outlined by ldriss and Boulanger (2008). The method developed by ldriss and Boulanger compares the undrained shear strength of the soil, corrected for earthquake magnitude and seismic loading effects, with the earthquake-induced shear stress. The risk of seismic-induced soil softening or liquefaction is low for saturated soils of the Willamette Silt Formation. Following a code-based earthquake, associated seismic-induced settlements are estimated on the order of about 1 in. In general, the deeper, stiffer, clayey soils of the Hillsboro Formation are not considered to be susceptible to significant soil-softening or liquefaction. Based on the relative consistency of soils at the site, we anticipate seismic-induced settlement will be relatively uniform across the site. Seismic-induced differential settlement between adjacent shallow foundations should be less than half of the total anticipated seismic-induced settlement at the ground surface.

DESIGN REVIEW AND CONSTRUCTION SERVICES

We welcome the opportunity to review and discuss construction plans and specifications for this project as they are being developed. In addition, GRI should be retained to review all geotechnical-related portions of the plans and specifications to evaluate whether they are in conformance with the recommendations provided in our report. In addition, to observe compliance with the intent of our recommendations, design concepts, and the plans and specifications, we are of the opinion that all construction operations dealing with earthwork and foundations should be observed by a GRI representative. Our construction-phase services will allow for timely design changes if site conditions are encountered that are different from those described in our report. If we do not have the opportunity to confirm our interpretations, assumptions, and analyses during construction, we cannot be responsible for the application of our recommendations to subsurface conditions that are different from those described in this report.

LIMITATIONS


This report has been prepared to aid the architect and engineer in the design of this project. The scope is limited to the specific project and location described herein, and our description of the project represents our understanding of the significant aspects of the project relevant to the earthwork and design and construction of foundations, slab-on-grade floors, retaining walls, and pavements. In the event that any changes in the design and location of the project elements as outlined in this report are planned, we should be given the opportunity to review the changes and to modify or reaffirm the conclusions and recommendations of this report in writing.

The conclusions and recommendations submitted in this report are based on the data obtained from the subsurface explorations made at the locations indicated on Figure 2 and from other sources of information discussed in this report. In the performance of subsurface investigations, specific information is obtained at specific locations at specific times. However, it is acknowledged that variations in soil conditions may exist between subsurface exploration locations. This report does not reflect any variations that may occur between these explorations. The nature and extent of variation may not become evident until construction. If, during construction, subsurface conditions differ from those encountered in the explorations, we should be advised at once so that we can observe and review these conditions and reconsider our recommendations where necessary.

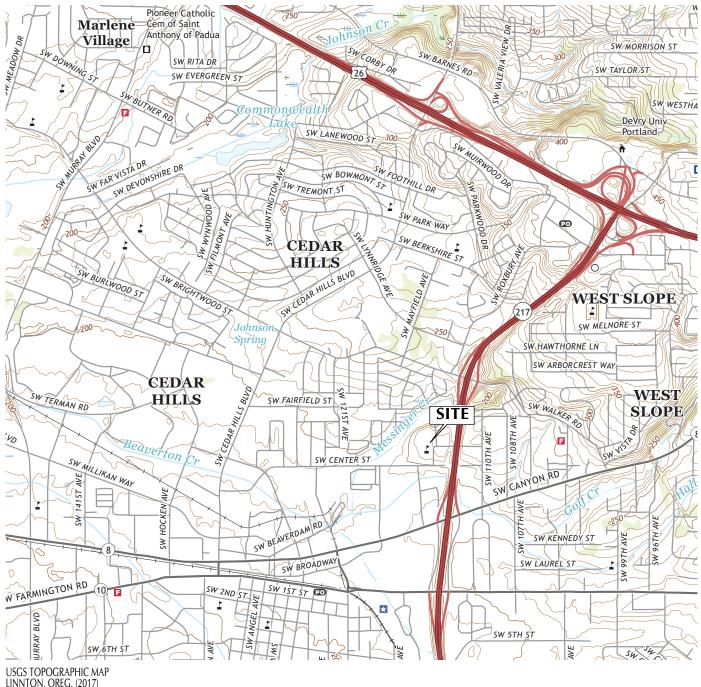
Please contact the undersigned if you have any questions or comments regarding this report.

Submitted for GRI,

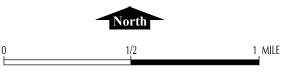
Brian Bayne

Brian Bayne, PE Senior Engineer

Tadesse Meskele, PhD, PE Project Engineer

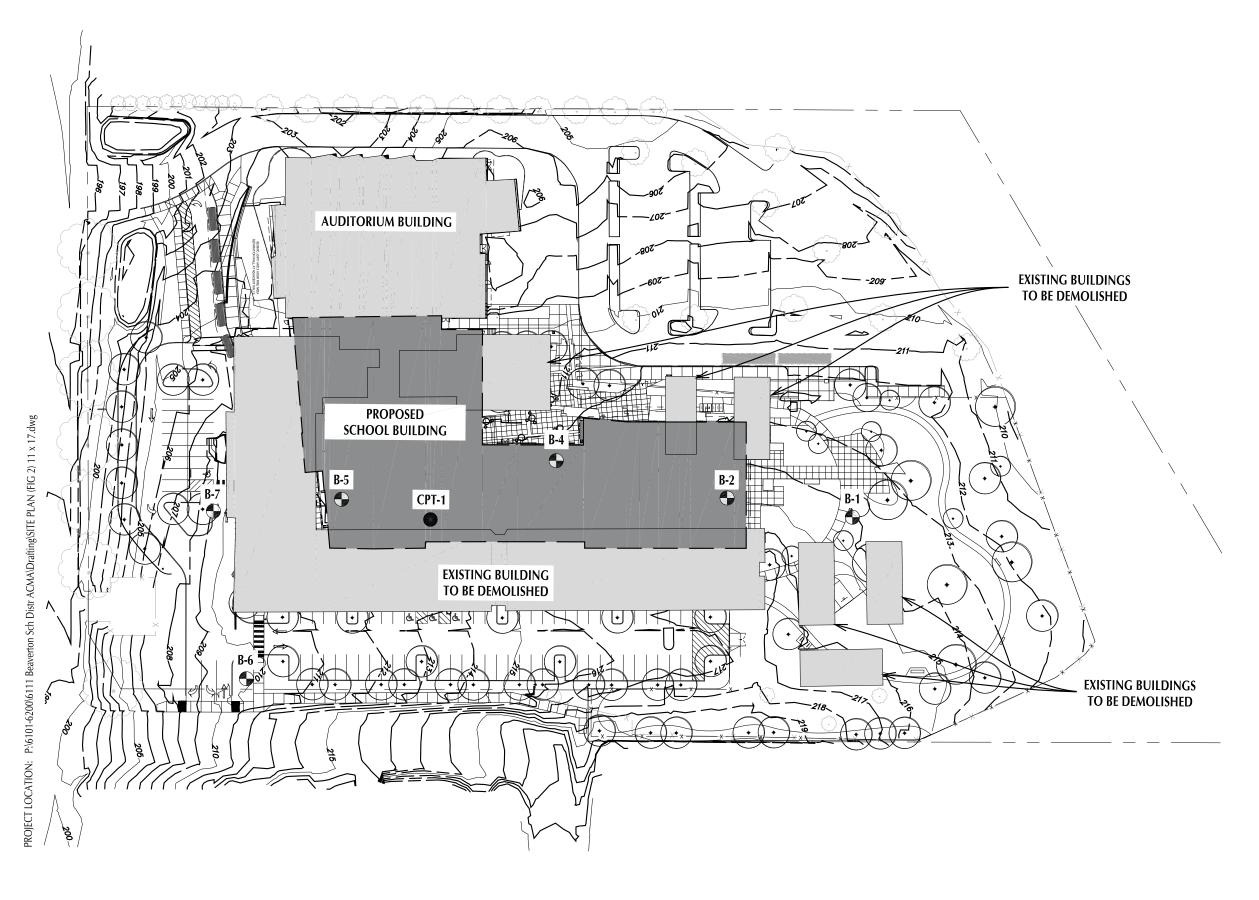

This document has been submitted electronically.

References


Principal

- Madin, I. P., Ma, L., and Niewendorp, C. A., 2006, Preliminary geologic map of the Linntonn 7.5' quadrangle, Multnomah and Washington counties, Oregon: State of Oregon Department of Geology and Mineral Industries, Open-File Report O-08-06.
- Agusti, G. C., and Sitar, N., 2013, Seismic earth pressures on retaining structures in cohesive soils: University of California, Berkeley, UCB GT 13-02.
- Idriss, I. M., and Boulanger, R. W., 2008, Soil Liquefaction during Earthquakes, Monograph MNO-12, Earthquake Engineering Research Institute, Oakland, CA, 261 pp.

LINNTON, OREG. (2017) BEAVERTON, OREG. (2017)



BEAVERTON SCHOOL DISTRICT ARTS AND COMMUNICATION MAGNET ACADEMY (ACMA)

VICINITY MAP

JOB NO.6111

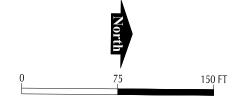
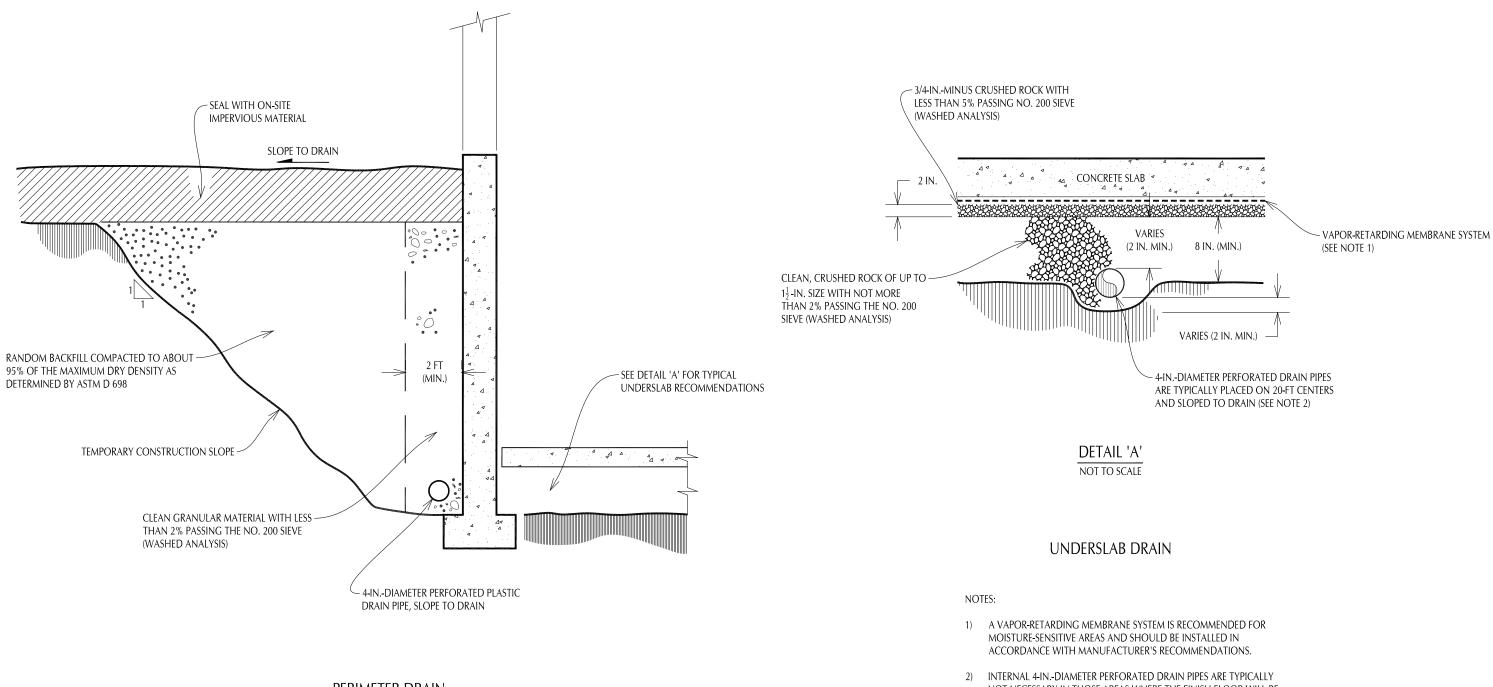


FIG. 2

SITE PLAN

BEAVERTON SCHOOL DISTRICT ARTS AND COMMUNICATIONS MAGNET ACADEMY


SITE PLAN FROM FILE BY DLR GROUP, UNDATED

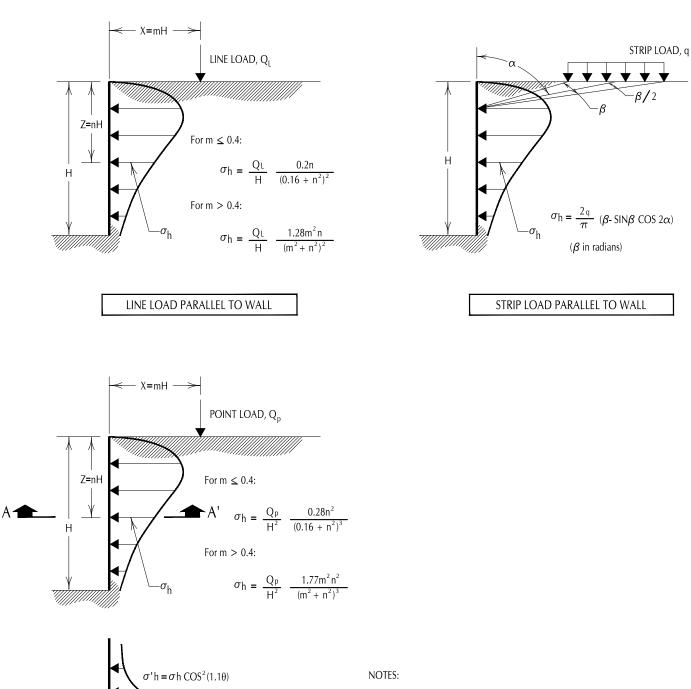
BORING COMPLETED BY GRI (MAY 29, 2017)

(MAY 30, 2017)

CONE PENETRATION TEST COMPLETED BY GRI

PERIMETER DRAIN

ABOVE EXISTING SITE GRADES.


NOT NECESSARY IN THOSE AREAS WHERE THE FINISH FLOOR WILL BE

TYPICAL SUBDRAINAGE DETAILS

JUNE 2018

JOB NO. 6111

(A)

θ

 σ 'h

X=mH

DISTRIBUTION OF HORIZONTAL PRESSURES

VERTICAL POINT LOAD

- 1. THESE GUIDELINES APPLY TO RIGID WALLS WITH POISSON'S RATIO ASSUMED TO BE 0.5 FOR BACKFILL MATERIALS.
- 2. LATERAL PRESSURES FROM ANY COMBINATION OF ABOVE LOADS MAY BE DETERMINED BY THE PRINCIPLE OF SUPERPOSITION.

BEAVERTON SCHOOL DISTRICT ARTS AND COMMUNICATIONS MAGNET ACADEMY

SURCHARGE-INDUCED LATERAL PRESSURE

JOB NO. 6111

FIG. 4

APPENDIX A Field Explorations and Laboratory Testing

APPENDIX A

FIELD EXPLORATIONS AND LABORATORY TESTING

FIELD EXPLORATIONS

General

Subsurface materials and conditions at the site were evaluated on May 29 and 30, 2018, with seven borings designated B-1 through B-7 and one cone penetration test (CPT) probe designated CPT-1. The approximate locations of the explorations completed for this project are shown on the Site Plan, Figure 2. The field exploration work was coordinated and documented by an engineering staff member from GRI, who maintained a log of the materials and conditions disclosed during the course of the work.

Borings

Borings B-1 through B-7 were advanced to depths of 5.5 to 41.5 ft with solid-stem auger drilling techniques using a trailer-mounted Buck Rogers 160 or Big Beaver portable drill rig provided and operated by Dan J. Fischer Excavating, Inc., of Forest Grove, Oregon. Disturbed and undisturbed samples were typically obtained from the borings at 2.5-ft intervals of depth in the upper 15 ft and at 5-ft intervals below this depth. Disturbed samples were obtained using a standard split-spoon sampler. At the time of sampling, the Standard Penetration Test (SPT) was conducted. This test consists of driving a standard split-spoon sampler into the soil a distance of 18 in. using a 140-lb hammer dropped 30 in. The number of blows required to drive the sampler the last 12 in. is known as the Standard Penetration Resistance, or SPT N-value. The SPT N-values provide a measure of the relative density of granular soils and the relative consistency of cohesive soils. The soil samples obtained in the split-spoon sampler were carefully examined in the field, and representative portions were saved in airtight jars for further examination and physical testing in our laboratory. Relatively undisturbed samples of fine-grained, cohesive soils were obtained by pushing 3-in.-outside-diameter (O.D.) Shelby tubes into the undisturbed soil a maximum distance of 24 in. using the drill rig. The soils exposed in the ends of the Shelby tubes were examined and classified in the field. After classification, the ends of the tubes were sealed with rubber caps and tape to preserve the natural moisture content of the soils. All samples were returned to our laboratory for further examination and testing.

Logs of the borings are provided on Figures 1A through 7A. Each log presents a descriptive summary of the various types of materials encountered in the boring and notes the depth at which the materials and/or characteristics of the materials change. To the right of the descriptive summary, the depth to groundwater and the numbers and types of samples are indicated. Farther to the right, SPT N-values are shown graphically, along with the natural moisture contents, Torvane shear strengths, percentage of material passing the No. 200 sieve, and Atterberg limits indices. Dry densities of undisturbed samples are shown in the far right column. The terms and symbols used to describe the soils encountered in the borings are defined in Table 1A and the attached legend.

Cone Penetration Test (CPT) Probe

The CPT probe, CPT-1, was advanced to a depth of about 71.5 ft below the ground surface using a truckmounted, Dutch Cone Unit provided and operated by Oregon Geotechnical Explorations, Inc., of Keizer, Oregon. During the CPT, a steel cone is forced vertically into the soil at a constant rate of penetration. The force required to cause penetration can be related to the bearing capacity of the soil immediately surrounding

the point of the penetrometer cone. This force is measured and recorded every 2 in. In addition to the cone measurements, measurements are obtained of the magnitude of force required to force a friction sleeve, attached above the cone, through the soil. The force required to move the friction sleeve can be related to the undrained shear strength of fine-grained soils. The dimensionless ratio of sleeve friction to point bearing capacity provides an indicator of the type of soil penetrated. The cone penetration resistance and sleeve friction values can be used to evaluate the relative density and relative consistency of cohesionless and cohesive soils, respectively.

An accelerometer is also fitted at the end of the probe. The accelerometer is used to measure the arrival times of shear waves produced at the ground surface as the exploration is advanced. Using these measurements, the shear-wave velocity of the soils penetrated can be estimated. The shear-wave velocities characterize the soils for the purpose of seismic studies. Shear wave measurement was made at 3.28 or 6.56-ft (1- to 2-m) increments during advancement of CPT probe CPT-1. The results of the testing are tabulated below.

Test Depth, ft	Shear-Wave Velocity, ft/second
6.56	602
9.84	467
13.12	542
16.40	602
19.69	898
22.97	969
26.25	862
29.53	1,169
32.81	1,081
36.09	1,017
39.37	1,084
42.65	827
45.93	1,032
49.21	1,268
52.49	910
55.77	1,060
59.06	997
62.34	1,949
65.62	2,704
68.90	3,645

CPT-1 SHEAR WAVE VELOCITY MEASUREMENTS

The terms used to describe the soils encountered in the CPT probes are defined in Table 2A. A log of the CPT probe is provided on Figure 8A.

Infiltration Tests

Field infiltration tests were conducted in borings B-1, B-3, B-6, and B-7 on May 30, 2018, in general conformance with the City of Portland 2016 Stormwater Management Manual (SMM) using the encased falling head method. The tests consisted of advancing the borings to a depth of 5.5 ft and pushing a 6-in.-inside-diameter (I.D.), open-ended PVC pipe into the undisturbed soil. The pipe was generally embedded about 6 in. into the undisturbed soil. A height of about 1 ft of water was maintained in the pipe overnight to saturate the soil. After soaking, the drop in water level in the standpipe was recorded at 10-minute intervals for 1 hour. Three infiltration tests were conducted in each of the borings.

LABORATORY TESTING

General

All samples obtained from the field explorations were returned to our laboratory, where the physical characteristics of the samples were noted and the field classifications modified where necessary. At the time of classification, the natural moisture content of each sample was determined. Additional geotechnical laboratory testing included Atterberg limits determinations, Torvane shear strength measurements, dry unit weight determinations, and one-dimensional consolidation testing. Results of the geotechnical laboratory testing are summarized in Tables 3A. The following sections describe the testing program in more detail.

Natural Moisture Content

Natural moisture content determinations were made in conformance with ASTM International (ASTM) D2216. The results are provided on Figures 1A through 7A and in Table 3A.

Torvane Shear Strength

The approximate undrained shear strength of the fine-grained soils obtained in the Shelby tubes was determined using the Torvane shear device. The Torvane is a hand-held apparatus with vanes that are inserted into the soil. The torque required to fail the soil in shear around the vanes is measured using a calibrated spring. The results of the Torvane shear strength measurements are summarized on Figures 2A, 4A, and 5A.

Atterberg Limits

Atterberg limits (liquid limit, plastic limit, and plasticity index) determinations were performed on four representative samples of fine-grained soil in substantial conformance with ASTM D4318. The test results are summarized on Figures 2A, 4A, and 5A; the Plasticity Chart, Figure 9A; and in Table 3A.

Dry Unit Weight

The dry unit weight of selected undisturbed soil samples was determined in the laboratory in accordance with ASTM D2937 by cutting a cylindrical specimen of soil from a Shelby tube sample. The dimensions of the specimen were carefully measured, the volume calculated, and the specimen weighed. After ovendrying, the specimen was reweighed and the water content calculated. The dry unit weight was then computed. The dry unit weights are summarized on Figures 2A, 4A, and 5A, and in Table 3A.

One-Dimensional Consolidation

One-dimensional consolidation testing was performed on two relatively undisturbed fine-grained soil from the Shelby tubes in accordance with ASTM D2435 to obtain data on the compressibility characteristics and stress history of the soil. The results of the testing are summarized on Figures 10A and 11A in the form of a

curve showing effective stress versus percent strain. The initial moisture content and dry unit weight of each sample are provided on the figures.

Table 1A: GUIDELINES FOR CLASSIFICATION OF SOIL

Relative Density	Standard Penetration Resistance (N-values), blows per ft
Very Loose	0 - 4
Loose	4 - 10
Medium Dense	10 - 30
Dense	30 - 50
Very Dense	over 50

Description of Relative Density for Granular Soil

Description of Consistency for Fine-Grained (Cohesive) Soils

Consistency	Standard Penetration Resistance (N-values), blows per ft	Torvane or Undrained Shear Strength, tsf
Very Soft	0 - 2	less than 0.125
Soft	2 - 4	0.125 - 0.25
Medium Stiff	4 - 8	0.25 - 0.50
Stiff	8 - 15	0.50 - 1.0
Very Stiff	15 - 30	1.0 - 2.0
Hard	over 30	over 2.0

Grain-Size Classification		Modifier for Subclassifie	cation
Boulders: >12 in.		Primary Constituent SAND or GRAVEL	Primary Constituent SILT or CLAY
Cobbles:	Adjective	Percentage of Other	Material (by weight)
3 - 12 in.	trace:	5 - 15 (sand, gravel)	5 - 15 (sand, gravel)
Gravel:	some:	15 - 30 (sand, gravel)	15 - 30 (sand, gravel)
¹ /4 - ³ /4 in. (fine) ³ /4 - 3 in. (coarse)	sandy, gravelly:	30 - 50 (sand, gravel)	30 - 50 (sand, gravel)
Sand:	trace:	< 5 (silt, clay)	
No. 200 - No. 40 sieve (fine) No. 40 - No. 10 sieve (medium)	some:	5 - 12 (silt, clay)	Relationship of clay and silt determined by
No. 10 - No. 4 sieve (coarse)	silty, clayey:	12 - 50 (silt, clay)	plasticity index test
Silt/Clay: pass No. 200 sieve			

Table 2A: CONE PENETRATION TEST (CPT) CORRELATIONS

Cone Tip Resistance, tsf	Consistency
<5	Very Soft
5 to 15	Soft to Medium Stiff
15 to 30	Stiff
30 to 60	Very Stiff
>60	Hard

COHESIVE SOILS

COHESIONLESS SOILS

Cone Tip Resistance, tsf	Relative Density
<20	Very Loose
20 to 40	Loose
40 to 120	Medium
120 to 200	Dense
>200	Very Dense

Reference

Kulhawy, F. H., and Mayne, P. W., 1990, Manual on estimating soil properties for foundation design, Electric Power Research Institute, EL-6800.

Table 3A

SUMMARY OF LABORATORY RESULTS

	Sample	Informatio	n				rg Limits		
Location	Sample	Depth. ft	Elevation, ft	Moisture Content, %	Dry Unit Weight, pcf	Liquid Limit, %	Plasticity Index, %	Fines Content, %	Soil Type
B-1	S-1	2.5		26					FILL
	S-2	4.0		33					FILL
B-2	S-2	4.5		30					SILT
	S-3	7.5		34					SILT
	S-4	10.5		37	86				SILT
	S-5	12.0		41				97	SILT
	S-6	15.3		34					SILT
	S-6	15.7		29	97				SILT
	S-6	16.5		33					SILT
	S-7	17.0		34		27	7		SILT
	S-8	20.2		34					SILT
	S-8	21.2		40					SILT
	S-8	21.4		30	95				SILT
	S-9	22.0		25		47	30		CLAY
	S-10	25.5		23	106				CLAY
	S-10	26.1		23					CLAY
	S-11	26.5		23					CLAY
	S-13	31.5		22					CLAY
	S-14	35.3		28	101				CLAY
	S-15	35.7		35					CLAY
	S-16	40.0		25					CLAY
B-3	S-1	2.5		30					SILT
	S-2	4.0		34					SILT
B-4	S-1	2.5		33					SILT
	S-3	7.7		35	87				SILT
	S-4	9.0		38		32	6		SILT
	S-6	14.0		38					SILT
	S-8	18.3		33					SILT
	S-9	22.5		31					CLAY
	S-9	23.2		27	97				CLAY
	S-10	23.8		25				77	CLAY
	S-11	27.5		27				96	CLAY
	S-12	32.5	-	29					CLAY
	S-13	38.5		29					CLAY
B-5	S-2	4.3		31					SILT
	S-3	7.5		30					SILT
	S-4	10.0		35				85	SILT
	S-5	12.5		33		29	2		SILT
	S-7	17.5		34					SILT
	S-8	20.2		34	90				SILT

Table 3A

SUMMARY OF LABORATORY RESULTS

Sample Information				Atterberg Limits					
Location	Sample	Depth, ft	Elevation, ft	Moisture Content, %	Dry Unit Weight, pcf	Liquid Limit, %	Plasticity Index, %	Fines Content, %	Soil Type
B-5	S-9	20.8		33				92	CLAY
	S-10	25.0		25					CLAY
	S-11	30.0		25				94	CLAY
	S-12	35.0		27					CLAY
	S-13	40.0		23					CLAY
B-6	S-1	2.5		31				99	SILT
	S-2	4.0		32					SILT
B-7	S-1	2.5		28					SILT
	S-2	4.0		28					SILT

BORING AND TEST PIT LOG LEGEND

SOIL SYMBOLS Symbol

N 1/2 N	
·	
0	
<u>[00]</u>	
0.0.0	
$\circ O^{\circ}$	
22	
<u>°</u> 67	
8. N. N	
0	
<u>1</u> H	
TTT	
$\Delta X \Delta$	
° ø	
/./.	
\overline{X}	
EDRO	

LANDSCAPE MATERIALS

Typical Description

FILL

GRAVEL; clean to some silt, clay, and sand Sandy GRAVEL; clean to some silt and clay Silty GRAVEL; up to some clay and sand Clayey GRAVEL; up to some silt and sand SAND; clean to some silt, clay, and gravel Gravelly SAND; clean to some silt and clay Silty SAND; up to some clay and gravel Clayey SAND; up to some silt and gravel SILT; up to some clay, sand, and gravel Gravelly SILT; up to some clay and sand Sandy SILT; up to some clay and gravel Clayey SILT; up to some sand and gravel CLAY; up to some silt, sand, and gravel Gravelly CLAY; up to some silt and sand Sandy CLAY; up to some silt and gravel Silty CLAY; up to some sand and gravel PEAT

B **CK SYMBOLS**

Symbol	Typical Description
+++ +++ +++	BASALT
	MUDSTONE
	SILTSTONE
··	SANDSTONE

SURFACE MATERIAL SYMBOLS

Symbol

60

Asphalt concrete PAVEMENT

Typical Description

Portland cement concrete PAVEMENT

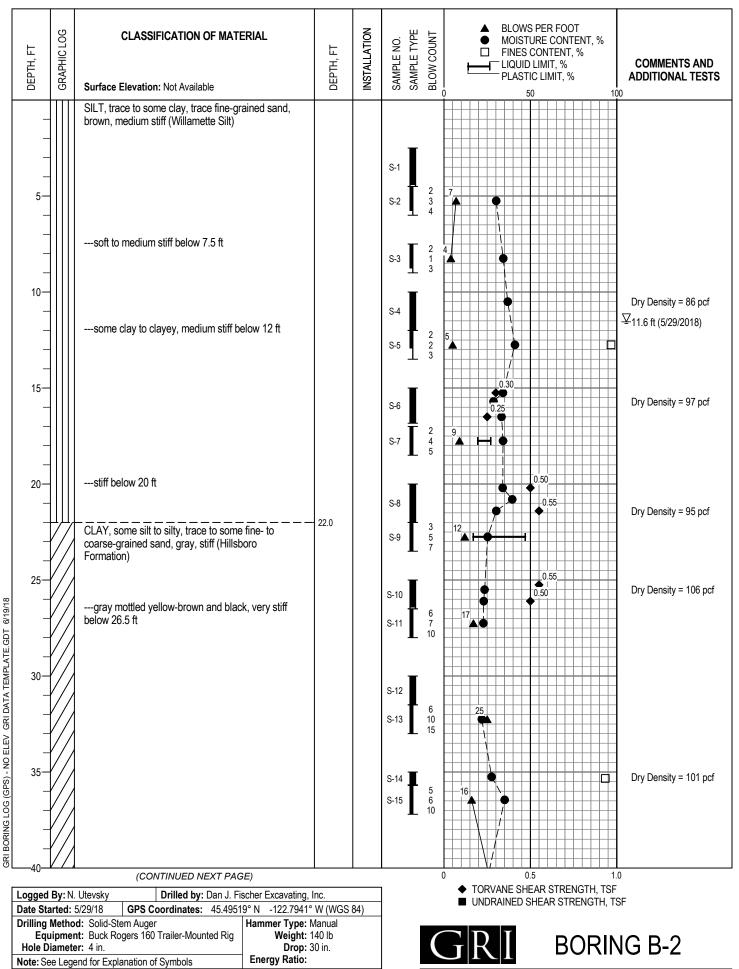
Crushed rock BASE COURSE

SAMPLER SYMBOLS

Symbol	Sampler Description
Ī	2.0-in. O.D. split-spoon sampler and Standard Penetration Test with recovery (ASTM D1586)
I	Shelby tube sampler with recovery (ASTM D1587)
\blacksquare	3.0-in. O.D. split-spoon sampler with recovery (ASTM D3550)
X	Grab Sample
	Rock core sample interval
	Sonic core sample interval
	Geoprobe sample interval

INSTALLATION SYMBOLS

Symbol	Symbol Description
	Flush-mount monument set in concrete
	Concrete, well casing shown where applicable
	Bentonite seal, well casing shown where applicable
	Filter pack, machine-slotted well casing shown where applicable
	Grout, vibrating-wire transducer cable shown where applicable
P	Vibrating-wire pressure transducer
	1-indiameter solid PVC
	1-indiameter hand-slotted PVC
	Grout, inclinometer casing shown where applicable
FIELD ME	ASUREMENTS


FI S

ymbol	Typical Description
Ţ	Groundwater level during drilling and date measured
Ţ	Groundwater level after drilling and date measured
	Rock core recovery (%)
	Rock quality designation (RQD, %)

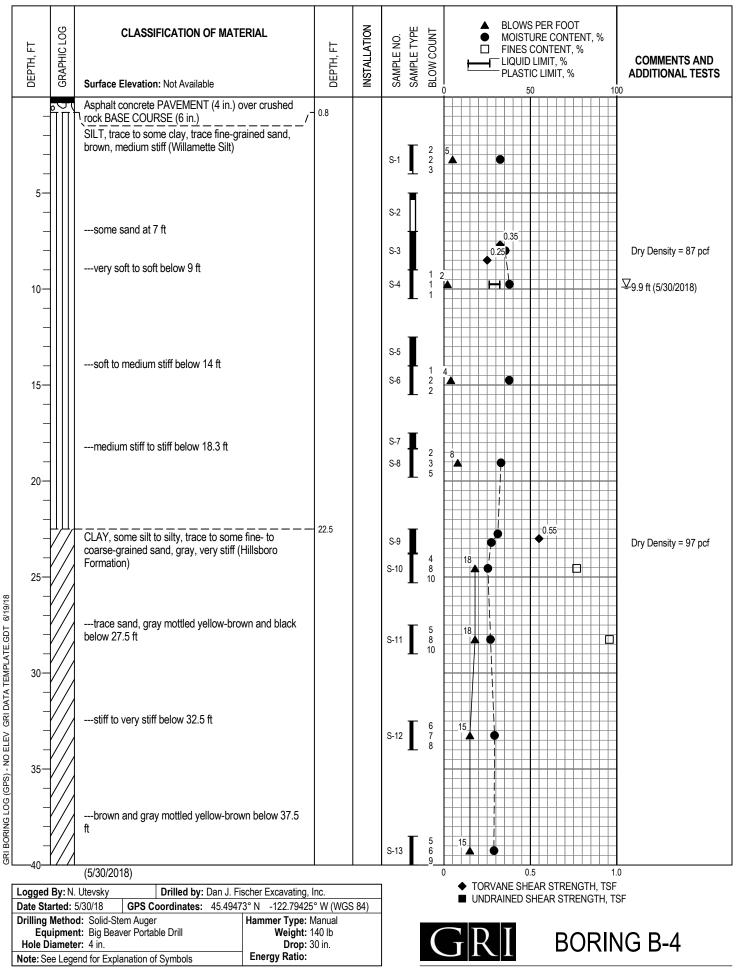
DEPTH, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	DEPTH, FT	INSTALLATION	SAMPLE NO.	SAMPLE TYPE	BLOW COUNT	BLOWS PER FOOT MOISTURE CONTENT, % FINES CONTENT, % LIQUID LIMIT, % PLASTIC LIMIT, % 0 50 100
		SILT, trace to some clay, trace fine-grained sand, brown, medium stiff, contains gravel and concrete fragments (Fill)				_		
5-		stiff below 4 ft			S-1 S-2	ł	2 3 4 3 5 5	
_	*****	(5/29/2018)	- 5.5			.	5	
_		Groundwater not encountered						
10—								
20-								
25— 81/61/0 —								
– – – – – – – – – – – – – – – – – – –								
GRI BORING LOG (GPS) - NO ELEV 00 01 02 03 04 04 04 04 04 04 04 04 04 04								
Logged Date Sta	arted: {	5/29/18 GPS Coordinates: 45.49553° N -122.79413	3° W (WGS	5 84)			(0 0.5 1.0 ◆ TORVANE SHEAR STRENGTH, TSF ■ UNDRAINED SHEAR STRENGTH, TSF
Equ Hole Di	iipmer iamete	d: Solid-Stem Auger ht: Buck Rogers 160 Trailer-Mounted Rig er: 8 in. end for Explanation of Symbols Energy Ratio:	140 lb				(GRI BORING B-1

JUNE 2018

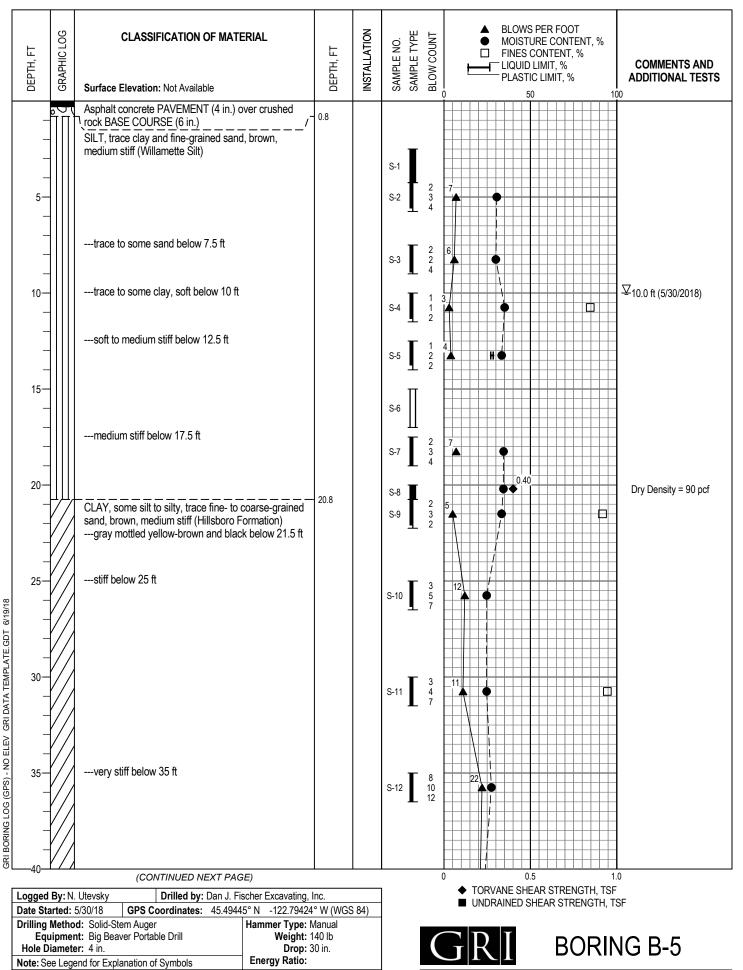
FIG. 1A

JUNE 2018

L O Aussimilation CLASSIFICATION OF MATERIAL L L E B B B COMMENTS AND DOTTONAL TESTS COMMENTS AND DOTTONAL TESTS Surface Elevation: Not Available L </th
◆ TORVANE SHEAR STRENGTH, TSF



JOB NO. 6111


DEPTH, FT GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	DEPTH, FT	INSTALLATION	SAMPLE NO. SAMPLE TYPE BLOW COLINT		C LIMIT, %	COMMENTS AND ADDITIONAL TESTS
	Surface Elevation: Not Available SILT, trace to some clay, trace fine-grained sand, brown, medium stiff, contains roots (Willamette Silt) (5/29/2018) Groundwater not encountered	- <u>F</u> EAD	INSTAL	Same Same Same Same Same Same Same Same		C LIMIT, %	
35- - - - - - - - - - - - - - - - - - -	5/29/18 GPS Coordinates: 45.49509° N -122.79349 od: Solid-Stem Auger Hammer Type: N N nt: Big Beaver Portable Drill Weight: 1 Weight: 1	° W (WGS /lanual 40 lb	\$ 84)		0 0. • TORVANE SHE • UNDRAINED S	5 1.0 EAR STRENGTH, TSF HEAR STRENGTH, TSF HEAR STRENGTH, TSF	

JOB NO. 6111

FIG. 3A

JUNE 2018

JUNE 2018

L E

JOB NO. 6111

DEPTH , FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	DEPTH, FT	INSTALLATION	SAMPLE NO.	SAMPLE TYPE	BLOW COUNT	BLOWS PER FOOT MOISTURE CONTENT, % FINES CONTENT, % LIQUID LIMIT, % PLASTIC LIMIT, % 0 50 100
	500	Asphalt concrete PAVEMENT (4 in.) over crushed	0.8					
		Crock BASE COURSE (6 in.)	0.8		S-1	Г	2 3	
_					S-2	t	234233	6
5-	Ш	(5/29/2018)	5.5		5-2	L	3 3	
		Groundwater not encountered						
_								
10—								
_								
_								
_								
15—								
_								
20-								
20								
_								
_								
_								
25—								
. –								
_								
30—								
_								
35-								
<u> </u>								
Logged I Date Sta Drilling M	rted: Netho	5/29/18 GPS Coordinates: 45.49429° N -122.79353 d: Solid-Stem Auger Hammer Type: N	° W (WGS /lanual	6 84)	-		(0 0.5 1.0 ◆ TORVANE SHEAR STRENGTH, TSF ■ UNDRAINED SHEAR STRENGTH, TSF
Hole Dia	amete	Meter Big Beaver Portable Drill Weight: 1 er: 8 in. Drop: 3 end for Explanation of Symbols Energy Ratio:	40 lb 0 in.					GRI BORING B-6

JUNE 2018

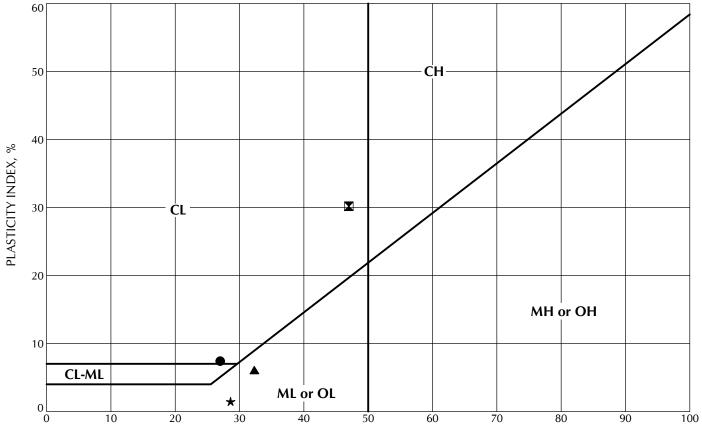

JOB NO. 6111

DEPTH, FT	GRAPHIC LOG	CLASSIFICATION OF MATERIAL Surface Elevation: Not Available	DEPTH, FT	INSTALLATION	SAMPLE NO.	SAMPLE TYPE	BLOW COUNT		Ŀ		M FI LI	OWS OISTI NES QUID ASTI	URE CON LIM IC LI	CO ITEN	NTE NT, % 6	NT, %				INTS A	
_		SILT, trace to some clay, trace fine-grained sand, brown, stiff, contains roots (Willamette Silt)																			
		brown mottled yellow-brown below 4 ft	5.5		S-1 S-2	I	3 3 6 3 5 6	91													
-		(5/29/2018)	0.0															-			
-		Groundwater not encountered																-			
10-																					
_																		-			
-																		-			
15								_										-			
15—																		-			
_																					
20-																		-			
20																		-			
_																		-			
-																		-			
25-																		-			
0/18/																		-			
– <u>וו</u> נים																					
																		-			
– –																					
																		-			
- Loc																					
																		-			
Date Sta Drilling Equ	arted: Metho iipme	d: Solid-Stem Auger Hammer Type: N nt: Big Beaver Portable Drill Weight: 1 er: 8 in. Drop: 3	° W (WGS /lanual 40 lb	<u>5 84)</u>				I	∎ U	ND	RAIN	0. E She Ied S	EAR	AR S	TRE	NGT	TSF H, T	SF	B-	7	
		end for Explanation of Symbols Energy Ratio:			J		JUN							JOB						-	FIG. 7A

GRI BORING LOG (GPS) - NO ELEV GRI DATA TEMPLATE.GDT 6/19/18

Logged By: N. Utevsky	Drilled by: Dan J. Fischer Excavating, Inc.					
Date Started: 5/29/18 GPS C	oordinates:	45.49407° N	-122.79417° W (WGS 84)			
Drilling Method: Solid-Stem Auge	Hai	Hammer Type: Manual				
Equipment: Big Beaver Portable Drill			Weight: 140 lb			
Hole Diameter: 8 in.		Drop: 30 in.				
Note: See Legend for Explanation of	Er	nergy Ratio:				

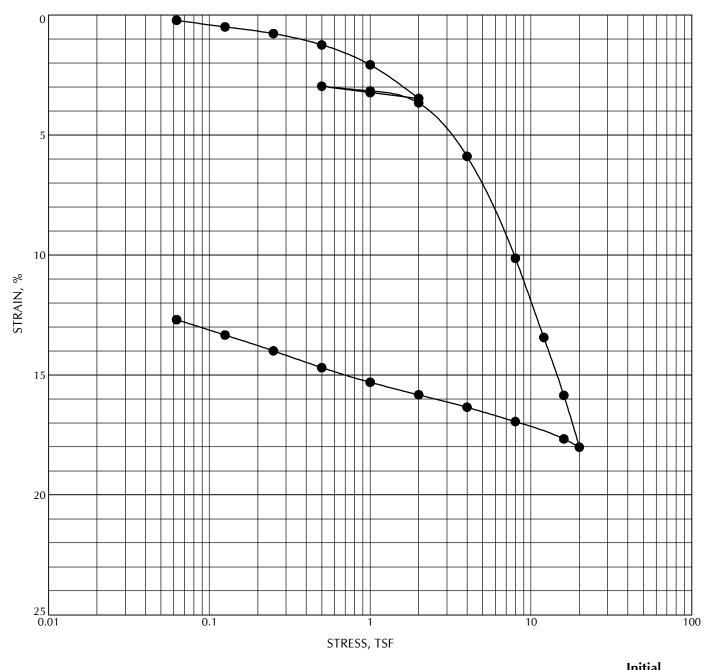
JUNE 2018



Observed By: N. Utevsky		Advanced By: Oregon Geotechnical Explorations, Inc.				
Date Started: 05/30/18	Date Started: 05/30/18 Ground Surface Elevation: Not Available					
Coordinates: Not Available						

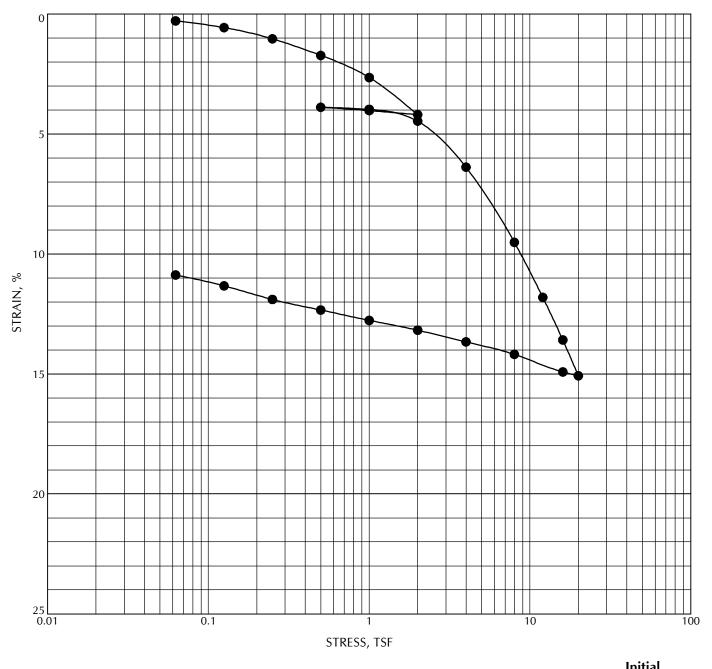
CONE PENETRATION TEST CPT-1

GROUP SYMBOL	UNIFIED SOIL CLASSIFICATION FINE-GRAINED SOIL GROUPS		GROUP SYMBOL	UNIFIED SOIL CLASSIFICATION FINE-GRAINED SOIL GROUPS
OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY		ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
ML	INORGANIC CLAYEY SILTS TO VERY FINE SANDS OF SLIGHT PLASTICITY		мн	INORGANIC SILTS AND CLAYEY SILT
CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY		СН	INORGANIC CLAYS OF HIGH PLASTICITY



LIQUID LIMIT, %

		Location	Sample	Depth, ft	Classification	LL	PL	PI	MC, %
		B-2	S-7	17.0	Clayey SILT, trace fine-grained sand, brown (Willamette Silt)	27	20	7	34
	X	B-2	S-9	22.0	CLAY, some silt to silty, trace to some fine- to coarse-grained sand, gray (Hillsboro Formation)	47	17	30	25
		B-4	S-4	9.0	SILT, trace to some clay, trace fine-grained sand, brown (Willamette Silt)	32	26	6	38
,	*	B-5	S-5	12.5	SILT, trace clay and fine-grained sand, brown (Willamette Silt)	29	27	2	33


PLASTICITY CHART

					liai
Location	Sample	Depth, ft	Classification	γ _d , pcf	MC, %
B-2	S-4	11.5	SILT, trace to some clay, trace fine-grained sand, brown, soft to medium stiff (Willamette Silt)	85	40

CONSOLIDATION TEST

				1111	liai
Location	Sample	Depth, ft	Classification	Υ _d , pcf	MC, %
B-4	S-3	7.5	SILT, trace to some clay, trace fine-grained sand, brown, medium stiff (Willamette Silt)	91	33

CONSOLIDATION TEST

APPENDIX B Site-Specific Seismic Hazard Study

APPENDIX B

SITE-SPECIFIC SEISMIC HAZARD STUDY

GENERAL

GRI completed a site-specific seismic hazard study for the proposed improvements to the Arts and Communications Magnet Academy (ACMA) in Beaverton, Oregon. The purpose of the study was to evaluate the potential seismic hazards associated with regional and local seismicity. We understand project improvements are being designed in accordance with the American Society of Civil Engineers (ASCE) Document 7-10, Minimum Design Loads for Buildings and Other Structures (ASCE 7-10), and 2014 Oregon Specialty Structural Code (OSSC). The ASCE 7-10 and 2014 OSSC require evaluation of seismic hazards based on the Risk-Targeted Maximum Considered Earthquake (MCER), which is defined in Chapter 21 of ASCE 7-10 as the response spectrum expected to achieve a 1% probability of building collapse within a 50-year period.

Our site-specific seismic hazard study was based on the potential for regional and local seismic activity, as described in the existing scientific literature, and on the subsurface conditions at the site, as disclosed by the geotechnical explorations completed for the project. Specifically, our work included the following tasks:

- 1) A detailed review of available literature, including published papers, maps, open-file reports, seismic histories and catalogs, and other sources of information regarding the tectonic setting, regional and local geology, and historical seismic activity that might have a significant effect on the site.
- 2) Compilation and evaluation of subsurface data gathered at and in the vicinity of the site, including classification and laboratory analyses of soil samples. This information was used to prepare a generalized subsurface profile for the site.
- 3) Identification of potential seismic sources appropriate for the site and characterization of those sources in terms of magnitude, distance, and acceleration response spectra.
- 4) Office studies, based on the generalized subsurface profile and the controlling seismic sources, resulting in conclusions and recommendations concerning:
 - a) specific seismic events and characteristic earthquakes that might have a significant effect on the project site,
 - b) the potential for seismic energy amplification at the site, and
 - c) site-specific acceleration response spectra for design of structures at the site.

This appendix describes the work accomplished and summarizes our conclusions and recommendations.

Geologic Setting

On a regional scale, the site is located at the northern end of the Willamette Valley lowland, a broad, gently deformed, north-south-trending topographic feature separating the Coast Range to the west from the Cascade Mountains to the east. The site is located approximately 81 km inland from the Cascadia Subduction Zone

(CSZ), an active plate boundary along which remnants of the Farallon Plate (the Gorda, Juan de Fuca, and Explorer plates) are being subducted beneath the western edge of the North American Plate. The subduction zone is a broad, eastward-dipping zone of contact between the upper portion of the subducting slabs of the Gorda, Juan de Fuca, and Explorer plates and the overriding North American Plate, as shown on the Tectonic Setting Summary, Figure 1B.

On a local scale, the site is located in the Portland Basin, a large, well-defined, northwest-trending structural basin bounded by high-angle, northwest-trending, right-lateral strike-slip faults considered to be seismogenic. The geologic units in the project area are shown on the Local Geologic Map, Figure 2B. The distribution of Quaternary faults in the site vicinity, as mapped by the U.S. Geological Survey (USGS), is shown on the Local Fault Map, Figure 3B. Information regarding the continuity and potential activity of these faults is lacking, due largely to the scale at which geologic mapping in the area has been conducted and the presence of thick, relatively young, basin-filling sediments that obscure underlying structural features. Other faults may be present within the project area, but clear stratigraphic and/or geophysical evidence regarding their location and extent is not presently available. Additional discussion regarding crustal faults is provided in the Local Crustal Event section below.

Because of the proximity of the site to the CSZ and its location within the Portland Basin, three distinctly different sources of seismic activity contribute to the potential for the occurrence of damaging earthquakes. Each of these sources is generally considered to be capable of producing damaging earthquakes. Two of these sources are associated with deep-seated tectonic activity related to the subduction zone; the third is associated with movement on the local, relatively shallow structures within and adjacent to the Portland Basin.

Subsurface Conditions. The project site is mantled with up to 22 ft of silt of the Willamette Silt Formation. The Willamette Silt soils are primarily brown and generally consist of silt with varying percentages of clay and fine-grained sand. The relative consistency of the Willamette Silt Formation is generally medium stiff to stiff. Soils of the Hillsboro Formation were encountered underlying the Willamette Silt Formation. The Hillsboro Formation generally consists of clay with variable silt and sand contents ranging from some silt to silty and trace to some fine- and coarse-grained sand. The clay is typically gray mottled yellow-brown and black. The relative consistency of the Hillsboro Formation is stiff to very stiff. Fill was encountered at the ground surface in boring B-1. The was brown and consisted of silt with trace to some clay and a trace of fine-grained sand. The relative consistency of the fill is generally medium stiff to stiff.

Seismicity

General. The available information indicates the potential seismic sources that may affect the site can be grouped into three independent categories: subduction zone events related to sudden slip between the upper surface of the Juan de Fuca Plate and the lower surface of the North American Plate, subcrustal (intraslab) events related to deformation and volume changes within the deeper portion of the subducted Juan de Fuca Plate, and local crustal events associated with movement on shallow local faults. Each of these sources is considered capable of producing damaging earthquakes in the Pacific Northwest. Based on review of historical records and evaluation of USGS national seismic hazard maps, the two primary types of seismic sources at the site are the megathrust CSZ and local crustal faults.

Cascadia Subduction Zone (CSZ). Written Japanese tsunami records suggest a great CSZ earthquake occurred in January of 1700 (Atwater et al., 2015). Geological studies suggest great megathrust earthquakes have occurred repeatedly in the past 7,000 years (Atwater et al., 1995; Clague, 1997; Goldfinger et al., 2003; and Kelsey et al., 2005), and geodetic studies (Hyndman and Wang, 1995; Savage et al., 2000) indicate rate of strain accumulation consistent with the assumption that the CSZ is locked beneath offshore northern California, Oregon, Washington, and southern British Columbia (Fluck et al., 1997; and Wang et al., 2001). Numerous geological and geophysical studies suggest the CSZ may be segmented (Hughes and Carr, 1980; Weaver and Michaelson, 1985; Guffanti and Weaver, 1988; Goldfinger, 1994; Kelsey and Bockheim, 1994; Mitchell et al., 1994; Personius, 1995; Nelson and Personius, 1996; and Witter, 1999), but the most recent studies suggest that for the last great earthquake in 1700, most of the subduction zone ruptured in a single Mw 9 earthquake (Satake et al., 1996; Atwater and Hemphill-Haley, 1997; and Clague et al., 2000). Published estimates of the probable maximum size of subduction zone events range from $M_W 8.3$ to $>M_W$ 9. Numerous detailed studies of coastal subsidence, tsunamis, and turbidites yield a wide range of recurrence intervals, but the most complete records (>4,000 years) indicate intervals of about 350 to 600 years between great earthquakes on the CSZ (Adams, 1990; Atwater and Hemphill-Haley, 1997; Witter, 1999; Clague et al., 2000; Kelsey et al., 2002; Kelsey et al., 2005; and Witter et al., 2003). Tsunami inundation in buried marshes along the Washington and Oregon coast and stratigraphic evidence from the Cascadia margin support these recurrence intervals (Kelsey et al., 2005; and Goldfinger et al., 2003). Goldfinger et al. (2003, 2012) evaluated turbidite evidence for 20 earthquakes that ruptured the entire CSZ over the past 10,000 years and about 20 Mw 8 earthquakes that only ruptured along the southern portion of the CSZ and developed a model for recurrence of the CSZ Mw 8 to 9 earthquakes.

The USGS Probabilistic Seismic Hazard Analysis (PSHA) assumes four potential locations for the eastern edge of the earthquake rupture zone for the CSZ, as shown in Figure 4B. The 2008 USGS mapping effort indicates two rupture scenarios are assumed to represent these megathrust events: 1) Mw 9.0±0.2 events that rupture the entire CSZ every 500 years, and 2) Mw 8.0 to 8.7 events with rupture zones that occur on segments of the CSZ and occur over the entire length of the CSZ during a period of about 500 years (Petersen et al., 2008). The assumed distribution of earthquake magnitudes is shown on Figure 5B. This distribution assumes the larger Mw 9.0 earthquake is the most likely single earthquake scenario on the CSZ.

Local Crustal Event. Sudden crustal movements along relatively shallow, local faults in the Portland area, although rare, have been responsible for local crustal earthquakes. The precise relationship between specific earthquakes and individual faults is not well understood, since few of the faults in the area are expressed at the ground surface and the foci of the observed earthquakes have not been located with precision. The history of local seismic activity is commonly used as a basis for determining the size and frequency to be expected of local crustal events. Although the historical record of local earthquakes is relatively short (the earliest reported seismic event in the area occurred in 1920), it can serve as a guide for estimating the potential for seismic activity in the area.

Based on fault mapping conducted by the USGS (Personius et al., 2003), the inferred location of the Portland Hills Fault is within 7 km of the site and is the closest crustal fault identified as a hazard to the site. The Portland Hills Fault has a characteristic earthquake magnitude of Mw 7.0. Based on Wong et al. (2001), the Portland Hills Fault is considered to be a reverse-oblique fault that dips to the southwest beneath the eastern base of the Portland Hills with a total fault length of approximately 40 to 60 km.

Code Background

As previously stated, seismic evaluation for the proposed improvements is being completed in accordance with the 2014 OSSC guideline, which references ASCE 7-10 and defines site-specific ground motions through MCE_R with the intent of including the probability of structural collapse. The code defines the site-specific MCE_R as the lower of the probabilistic MCE_R and the deterministic MCE_R. The ground motion associated with the probabilistic MCE_R represents a targeted risk level of 1% in 50 years probability of collapse in the direction of maximum horizontal response with 5% damping and is based on modifications to the USGS 2,475-year, hazard-level PSHA results. The deterministic MCE_R is the higher of the following: 1) an 84th-percentile, 5% damped spectral response in the direction of maximum horizontal response to the direction of maximum horizontal response obtained from a characteristic earthquake on a known active fault within the region; or 2) the response spectrum from ASCE 7-10 Figure 21.2-1 with limiting spectral response factors, Ss and S1, of 1.5 and 0.6 g, respectively, and the site coefficients, F_a and F_v, factors based on the ASCE 7-10 soil site class.

Probabilistic and Deterministic Seismic Hazard Considerations

The probability of an earthquake of a specific magnitude occurring at a given location is commonly expressed by its return period, i.e., the average length of time between successive occurrences of an earthquake of that size or larger at that location. The return period of a design earthquake is calculated once a project design life and some measure of the acceptable risk that the design earthquake might occur or be exceeded are specified. These expected earthquake recurrences are expressed as a probability of exceedance (PE) during a given time period or design life. The USGS provides updated probabilistic seismic hazard maps about every six years for various PEs or hazard levels across the United States. The results of a PSHA for a given hazard level are commonly referred to as a Uniform Hazard Spectrum (UHS) because all spectral ordinates have a uniform PE in a given period of time.

The ASCE 7-10 and 2014 OSSC define probabilistic ground motions based on the MCER in Section 21.2.1 of ASCE 7-10. These codes utilize the 2008 USGS PSHA seismic hazard mapping effort. The probabilistic MCE_R is developed using the USGS PSHA 2% PE in 50 years (2,475-year recurrence interval) ground motions with the application of directivity factors and risk coefficients to the spectral values. The directivity factors adjust the spectral values from geometric mean to direction of maximum horizontal response and the risk coefficients incorporate the uniform collapse risk objective of 1% in a 50-year time period. The geometric mean ground motions provided by the USGS are converted to the corresponding direction of maximum horizontal response values by applying site-specific short- and long-period directivity factors obtained from the USGS Seismic Design Maps. Based on our review of the USGS maps, directivity factors of 1.1 and 1.3 were used to develop the maximum horizontal values at spectral periods less than or equal to 0.2 second and greater than or equal to 1.0 second, respectively. At spectral periods between 0.2 and 1.0 second, the directivity factor was estimated using linear interpolation. The risk coefficients used to convert the USGS ground motions to risk-targeted values are obtained from maps provided in Chapter 22 of ASCE 7-10. Based on our review of these maps, the short- and long-period risk coefficients (CRs) and (CR1) for the site are approximately 0.90 and 0.87, respectively. For other periods, the risk coefficients were estimated based on the method presented in Section 21.2.1.1 of ASCE 7-10. The method recommends applying CRS at periods less than or equal to 0.2 second and CR1 at periods greater than or equal to 1.0 second. For periods between 0.2 and 1.0 second, the risk coefficients are based on linear interpolation. The probabilistic MCE_R values for the bedrock or B/C boundary condition at the site are summarized on Table 1B. For comparison purposes,

the table also includes the USGS 2% in 50-year spectral values. It should be noted that the probabilistic MCE_R and the 2,475-year hazard-level spectral values are relatively similar.

The probabilistic 2,475-year spectral value at zero period (PGA) represents the Maximum Considered Earthquake Geometric Mean (MCEG) peak ground accelerations defined by Section 21.5 of ASCE 7-10. The MCEG value is generally used for evaluating the potential for liquefaction, soil strength loss, and dynamic slope stability.

	Spectral Acceleration, g					
Period, seconds	2,475-Year*	Probabilistic MCEr				
0	0.44	0.44				
0.1	0.92	0.91				
0.2	1.01	1.00				
0.3	0.87	0.88				
0.5	0.68	0.71				
1	0.38	0.43				
2	0.19	0.22				

Table 1B: 2008 USGS PSHA AND PROBABILISTIC MCER SPECTRAL VALUES(SITE B/C BOUNDARY CONDITIONS)

* PSHA values obtained directly from 2008 USGS UHS.

A deterministic seismic hazard analysis (DSHA) was completed concurrently with review of the probabilistic analysis to evaluate the MCE_R in accordance with Section 21.2.2 of ASCE 7-10. The deterministic MCE_R ground motions are defined based on 84th percentile, i.e., one standard deviation, of the median spectral response acceleration in the direction of maximum horizontal response.

A DSHA is completed by estimating ground motions for characteristic magnitude earthquakes at the locations of active seismic sources in the region. Deaggregation of the 2008 USGS PSHA indicates the two primary seismic sources for the site are a magnitude Mw 9.0 CSZ earthquake with a source-to-site distance of approximately 81 km and a magnitude Mw 7.0 local crustal earthquake with a source-to-site distance of approximately 7 km. In accordance with assumptions for the 2008 USGS mapping effort incorporated in ASCE 7-10, the Ground Motion Prediction Equations (GMPE) of Youngs et al. (1997), Atkinson and Boore (2003), and Zhao et al. (2006), with weights of 0.25, 0.25, and 0.5, respectively, were used to develop the deterministic 84th-percentile response spectrum for the CSZ earthquakes. For the local crustal earthquakes, the GMPEs of Boore and Atkinson (2008), Campbell and Bozorgnia (2008), and Chiou and Youngs (2008) were used with equal weights to develop the deterministic 84th-percentile spectral values were then modified with the previously discussed directivity factors to obtain the spectral values in direction of maximum horizontal response. The resulting deterministic response spectra for bedrock or B/C boundary conditions are shown on Figure 6B.

Finally, the spectral values from the site-specific, 84th-percentile deterministic spectra were compared with the code-based deterministic lower limit spectrum provided in Section 21.2.2 of ASCE 7-10. The deterministic MCE_R spectrum is defined as the larger of the 84th-percentile spectral values and the code-

based lower limit. As shown on Figure 6B, the code-based lower limit deterministic spectrum was observed to be higher than both the local crustal-based 84th-percentile and the CSZ-based 84th-percentile deterministic spectra at all periods. Therefore, the deterministic MCE_R is defined by the code-based lower limit deterministic spectrum as defined in Section 21.2.2 of ASCE 7-10.

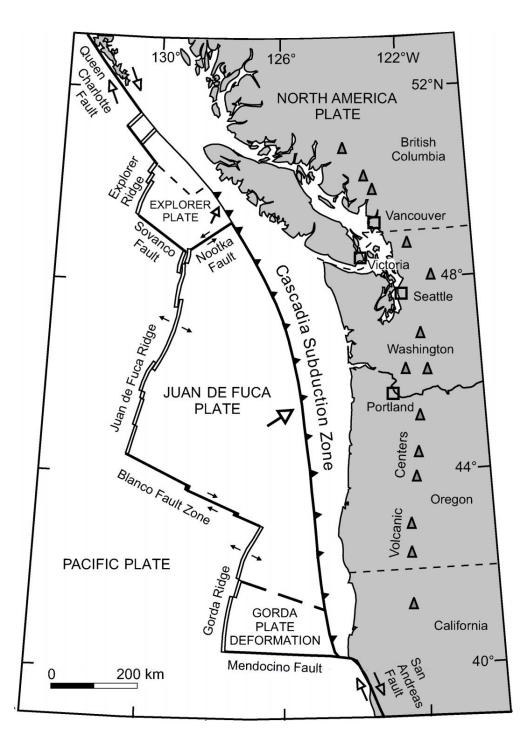
The MCE_R response spectrum is developed in accordance with the requirements of ASCE 7-10, which defines the controlling spectrum as the lower of the probabilistic MCE_R and the deterministic MCE_R spectra. Figure 7B shows a comparison of the probabilistic and deterministic MCE_R spectra and indicates the probabilistic spectral values are lower than the deterministic values at all periods. Therefore, in accordance with Section 21.2.3 of ASCE 7-10, the probabilistic MCE_R spectrum defines the MCE_R response spectrum.

Recommended Design Spectra

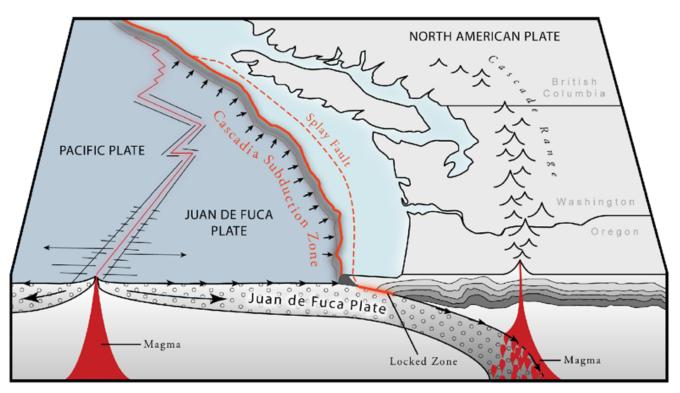
The recommended ground surface spectra were developed using the mapped bedrock spectral acceleration parameters S_s and S_1 at the site, and corresponding site amplification coefficients F_a and F_v to account for underlying soil conditions at the site. In accordance with Section 20.4.2 of ASCE 7-10 and the results of our subsurface investigation indicates the site is classified as Site Class D. For MCE_R hazard level, the S_s and S_1 spectral parameters corresponding to periods of 0.2 and 1.0 second are 1.00 and 0.43 g, respectively. The site coefficients, F_a and F_v , of 1.10 and 1.57, respectively, were applied in developing the ground surface MCE_R response spectrum. The design-level response spectrum is calculated as two-thirds of the MCE_R response spectrum. The spectral values are based on a damping ratio of 5%. The recommended ground surface response spectral values are summarized in Table 2B and on Figure 8B.

Period, seconds	MCER Spectral Values, g	Design Response Spectral Values, g
0.00	0.44	0.29
0.12	1.10	0.73
0.20	1.10	0.73
0.50	1.10	0.73
0.62	1.10	0.73
0.80	0.85	0.57
1.00	0.68	0.45
1.50	0.45	0.30
2.00	0.34	0.23
2.50	0.27	0.18
3.00	0.23	0.15

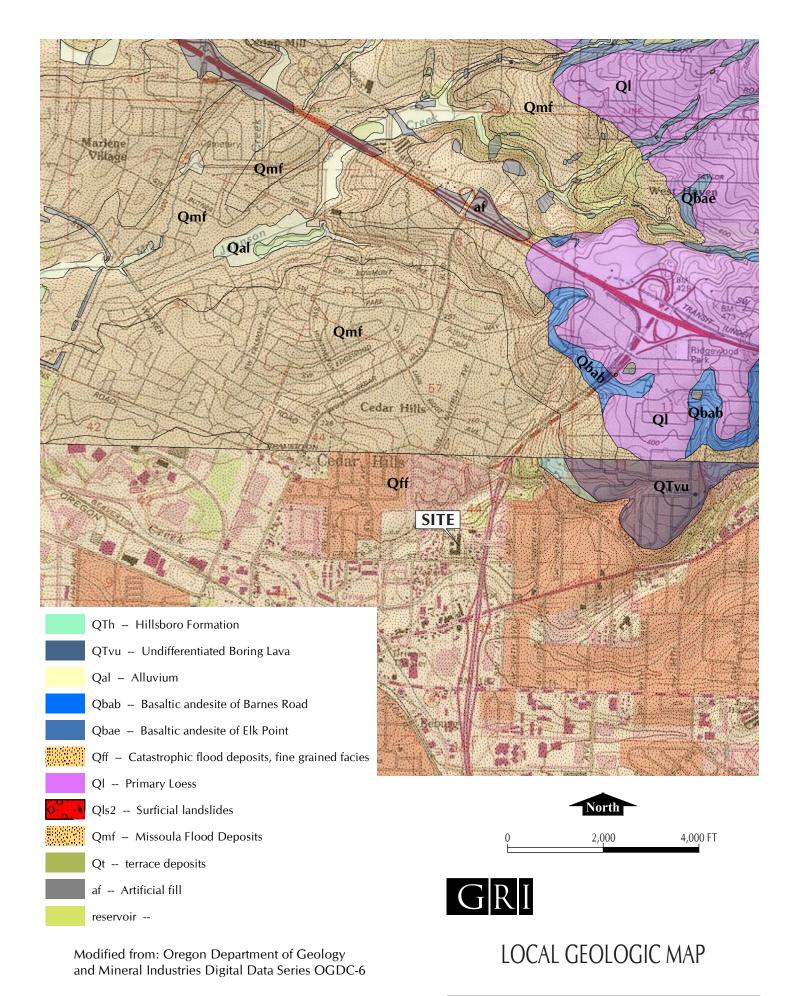
TABLE 2B: RECOMMENDED RESPONSE SPECTRA, 5% DAMPING

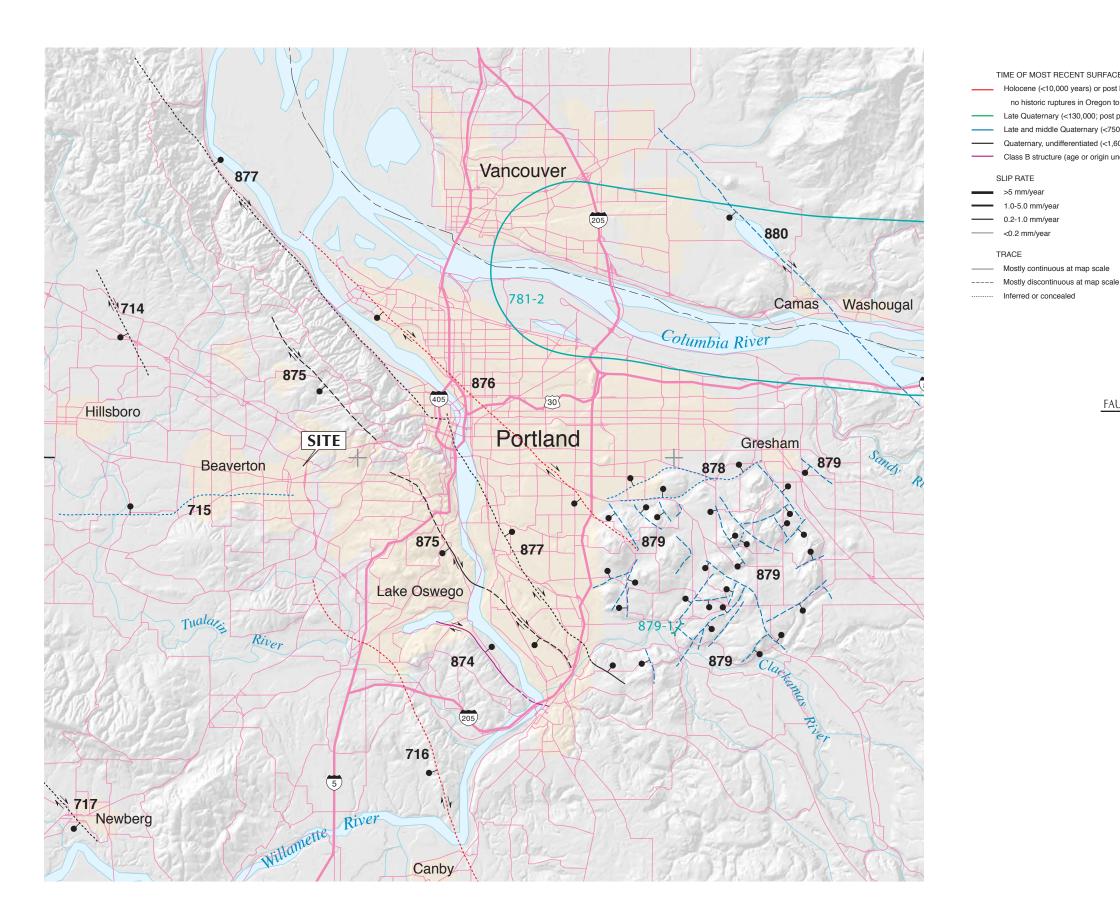

References

- Adams, J., 1990, Paleoseismicity of the Cascadia subduction zone: Evidence from turbidites off the Oregon-Washington margin: Tectonics, v. 9, no. 4, p. 569-583.
- American Society of Civil Engineers, 2010, ASCE 7-10: Minimum Design Loads for Buildings and Other Structures, Reston, VA.
- Atkinson, G. M., and Boore, D. M., 2003, Empirical ground motion relations for subduction zone earthquakes and their application to Cascadia and other regions: Seismological Research Letters, v. 93, no. 4, p. 1703-1729.
- Atwater, B. F., and Hemphill-Haley, E., 1997, Recurrence intervals for great earthquakes of the past 3,500 years at northeastern Willapa Bay, Washington: U.S. Geological Survey Professional Paper 1576, 108 p.
- Atwater, B. F., Nelson, A. R., Clague, J. J., Carver, G. A., Yamaguchi, D. K., Bobrowsky, P. T., Bourgeois J., Darienzo, M. E., Grant, W. C., Hemphill-Haley, E., Kelsey, H. M., Jacoby, G. C., Nishenko, S. P., Palmer, S. P., Peterson, C. D., and Reinhart, M. A., 1995, Summary of coastal geologic evidence for past great earthquakes at the Cascadia subduction zone: Earthquake Spectra, v. 11, no. 1, p. 1-18.
- Atwater, B.F., Musumi-Rokkaku, S., Satake, K., Tsuji, Y., Ueda, K., and Yamaguchi, D.K., 2015, The orphan tsunami of 1700— Japanese clues to a parent earthquake in North America, 2nd ed.: U.S. Geological Survey Professional Paper 1707, Seattle, University of Washington Press, p. 135.
- Boore, D. M., and Atkinson, G. M., February 2008, Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s: Earthquake Engineering Research Institute, Earthquake Spectra, v. 24, no. 1, p. 99-138.
- Campbell, K. W., and Bozorgnia, Y., February 2008, NGA ground motion model for the geometric mean horizontal component of PGA, PGV, and PGD and 5%-damped linear elastic response spectra for periods ranging from 0.01 to 10 s: Earthquake Engineering Research Institute, Earthquake Spectra, v. 24, no. 1, pp 139-171.
- Chiou, S. J., and Youngs, R. R., 2008, NGA Model for Average Horizontal Component of Peak Ground Motion and Response Spectra: Pacific Earthquake Engineering Research Center, PEER 2008/09.
- Clague, J. J., 1997, Evidence for large earthquakes at the Cascadia subduction zone: Reviews of Geophysics, v. 35, no. 4, p. 439-460.
- Clague, J. J., Atwater, B. F., Wang, K., Wang, Y., and Wong, I., 2000, Penrose conference report–Great Cascadia earthquake tricentennial: GSA Today, v. 10, no. 11, p. 14-15.
- Fluck, P., Hyndman, R. D., and Wang, K., 1997, Three-dimensional dislocation model for great earthquakes of the Cascadia subduction zone: Journal of Geophysical Research, v. 102, no. B9, p. 20,539-20,550.
- Goldfinger, C., 1994, Active deformation of the Cascadia Forearc–Implications for great earthquake potential in Oregon and Washington: Oregon State University, unpublished Ph.D. dissertation, 246 p.
- Goldfinger, C., Nelson, C. H., and Johnson, J. E., 2003, Holocene earthquake records from the Cascadia subduction zone and northern San Andreas fault based on precise dating of offshore turbidites: Annual Review of Earth and Planetary Sciences 31, p. 555– 577.
- Goldfinger, C., Nelson, C. H., Morey, A., Johnson, J. E., Gutierrez-Pastor, J., Eriksson, A. T., Karabanov, E., Patton, J., Gracia, E., Enkin, R., Dallimore, A., Dunhill, G. and Vallier, T., 2012, Turbidite Event History: Methods and Implications for Holocene Paleoseismicity of the Cascadia Subduction Zone, USGS Professional Paper 1661.
- Guffanti, M., and Weaver, C. S., 1988, Distribution of late Cenozoic volcanic vents in the Cascade Range--Volcanic arc segmentation and regional tectonic considerations: Journal of Geophysical Research, v. 93, no. B6, p. 6513-6529.
- Hughes, J. M., and Carr, M. J., 1980, Segmentation of the Cascade volcanic chain: Geology, v. 8, p. 15-17.
- Hyndman, R. D., and Wang, K., 1995, The rupture zone of Cascadia great earthquakes from current deformation and the thermal regime: Journal of Geophysical Research, v. 100, no. B11, p. 22,133-22,154.
- Kelsey, H. M., and Bockheim, J. G., 1994, Coastal landscape evolution as a function of eustasy and surface uplift rate, Cascadia margin, southern Oregon: Geological Society of America Bulletin, v. 106, p. 840-854.
- Kelsey, H. M., Nelson, A. R., Hemphill-Haley, E., Witter, R. C., 2005, Tsunami history of an Oregon coastal lake reveals a 4600 yr record of great earthquakes on the Cascadia subduction zone: GSA Bulletin, v. 117, p. 1009-1032.
- Kelsey, H. M., Witter, R. C., and Hemphill-Haley, E, 2002, Pl-boundary earthquakes and tsunamis of the past 5,500 years, Sixes River estuary, southern Oregon: Geological Society of America Bulletin, v. 114, no. 3, p. 298-314.
- Mitchell, C. E., Vincent, P., Weldon, R. J., III, and Richards, M. A., 1994, Present-day vertical deformation of the Cascadia margin, Pacific Northwest, United States: Journal of Geophysical Research, v. 99, no. B6, p. 12,257-12,277.


- Nelson, A. R., and Personius, S. F., 1996, Great-earthquake potential in Oregon and Washington–An overview of recent coastal geologic studies and their bearing on segmentation of Holocene ruptures, central Cascadia subduction zone, in Rogers, A. M., Walsh, T. J., Kockelman, W. J., and Priest, G. R., eds., Assessing earthquake hazards and reducing risk in the Pacific Northwest: U.S. Geological Survey Professional Paper 1560, v. 1, p. 91-114.
- Oregon Structural Specialty Code (OSSC), 2014, Building Code Divisions, Salem, Oregon.
- Personius, S. F., 1995, Late Quaternary stream incision and uplift in the forearc of the Cascadia subduction zone, western Oregon: Journal of Geophysical Research, v. 100, no. B10, p. 20,193-20,210.
- Personius, S. F., Dart, R. L., Bradley, L. A., and Haller, K. M., 2003, Map and data for Quaternary faults and folds in Oregon: U. S. Geological Survey Open-File Report 03-095.
- Petersen, M. D., Frankel, A. D., Harmsen, S. C., Mueller, C. S., Haller, K. M., Wheeler, R. L., Wesson, R. L., Zeng, Y, Boyd, O. S., Perkins, D. M., Luco, N., Field, E. H., Wills, C. J., and Rukstales, K. S., 2008, Documentation for the 2008 update of the United States National Seismic Hazard Maps: U. S. Geological Survey Open-File Report 2008-1128.
- Satake, K., Shimazaki, K., Tsuji, Y., and Ueda, K., 1996, Time and size of a giant earthquake in Cascadia inferred from Japanese tsunami records of January 1700: Nature, v. 379, p. 246-249.
- Savage, J. C., Svarc, J. L., Prescott, W. H., and Murray, M. H., 2000, Deformation across the forearc of the Cascadia subduction zone at Cape Blanco, Oregon: Journal of Geophysical Research, v. 105, no. B2, p. 3095-3102.
- U. S. Geological Survey, 2008, Probabilistic hazard lookup by latitude, longitude, accessed 04/05/17 from USGS website: https://geohazards.usgs.gov/deaggint/2008/.
- Wang, Y., He, J., Dragert, H., and James, T. S., 2001, Three-dimensional viscoelastic interseismic deformation model for the Cascadia subduction zone: Earth, Planets and Space, v. 53, p. 295-306.
- Weaver, C. S., and Michaelson, C. A., 1985, Seismicity and volcanism in the Pacific Northwest–Evidence for the segmentation of the Juan de Fuca Plate: Geophysical Research Letters, v. 12, no. 4, p. 215-218.
- Witter, R. C., 1999, Late Holocene paleoseismicity, tsunamis and relative sea-level changes along the south-central Cascadia subduction zone, southern Oregon: University of Oregon, unpublished Ph.D. dissertation, 178 p.
- Witter, R. C., Kelsey, H. M., Hemphill-Haley, E., 2003. Great Cascadia earthquakes and tsunamis of the past 6,700 years, Coquille River estuary, southern coastal Oregon: Geological Society of America Bulletin 115, p. 1289–1306.
- Wong, I. G., Hemphill-Haley, M. A., Liberty, L. M., and Madin, I. P., 2001, The Portland Hills fault: an earthquake generator or just another old fault?: Oregon Geology, v. 63, no. 2, pp. 39–50.
- Youngs, R. R., Chiou, S. J., Silva, W. J. and Humphrey, J. R., 1997, Strong ground motion attenuation relationships for subduction zone earthquakes: Seismological Research Letters, v. 68, no. 1, p. 58-73.
- Zhao, J. X., Zhang, J., Asano, A., Ohno, Y., Oouchi, T., Takahashi, T., Ogawa, H., Irikura, K., Thio, H., Somerville, P., Fukushima, Y., and Fukushima, Y., 2006, Attenuation relations of strong ground motion in Japan using site classification based on predominant period: Bulletin of the Seismological Society of America, v. 96, p. 898–913.

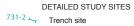
A) TECTONIC MAP OF PACIFIC NORTHWEST, SHOWING ORIENTATION AND EXTENT OF CASCADIA SUBDUCTION ZONE (MODIFIED FROM DRAGERT AND OTHERS, 1994)


Cascadia Subduction Zone Setting


CASCADIA SUBDUCTION ZONE SETTING, TSUNAMI INUNDATION MAPS, OREGON DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRY, 2013

TECTONIC SETTING SUMMARY

JUNE 2018

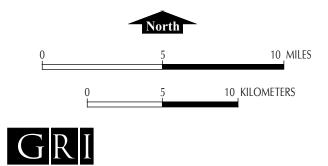


MAP EXPLANATION

RFACE	RUPT	URE
RFACE	RUPI	URE

- Holocene (<10,000 years) or post last glaciation (<15,000 years; 15 ka);
- no historic ruptures in Oregon to date
- Late Quaternary (<130,000; post penultimate glaciation)
- Late and middle Quaternary (<750,000 years; 750 ka)
- Quaternary, undifferentiated (<1,600,000 years; <1.6 Ma)
- Class B structure (age or origin uncertain)

- STRUCTURE TYPE AND RELATED FEATURES
- Normal or high-angle reverse fault
- --⊊ Strike-slip fault
- ----- Thrust fault
- -t- Anticlinal fold
- ------ Monoclinal fold
- Plunge direction of fold
- Fault section marker *



781-2 Subduction zone study site

- CULTURAL AND GEOGRAPHIC FEATURES
- Divided highway
- Primary or secondary road
- Permanent river or stream
- Intermittent river or stream
- Permanent or intermittent lake

FAULT NUMBER	NAME OF STRUCTURE
714	HELVETIA FAULT
715	BEAVERTON FAULT
716	CANBY-MOLALLA FAULT
874	BOLTON FAULT
875	OATFIELD FAULT
876	EAST BANK FAULT
877	PORTLAND HILLS FAULT
878	GRANT BUTTE FAULT
879	DAMASCUS-TICKLE CREEK FAULT ZONE
880	LACAMAS LAKE FAULT

FROM: PERSONIUS, S.F., AND OTHERS, 2003, MAP OF QUATERNARY FAULTS AND FOLDS IN OREGON, USGS OPEN FILE REPORT OFR-03-095.

LOCAL FAULT MAP

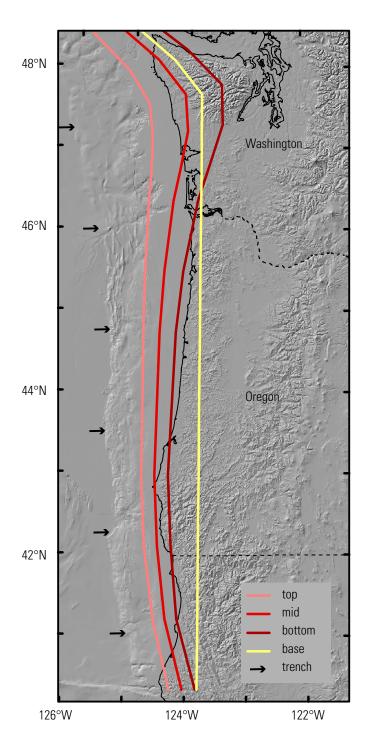


FIGURE 21. LOCATION OF THE EASTERN EDGE OF EARTHQUAKE RUP-TURE ZONES ON THE CASCADIA SUBDUCTION ZONE FOR THE VARIOUS MODELS USED IN THIS STUDY RELATIVE TO THE SURFICIAL EXPRESSION OF THE TRENCH: TOP, BASE OF THE ELASTIC ZONE; MID, MIDPOINT OF THE TRANSITION ZONE; BOTTOM, BASE OF THE TRANSITION ZONES; BASE, BASE OF THE MODEL THAT ASSUMES RUPTURES EXTEND TO ABOUT 30-KILOMETERS DEPTH. FIGURE PROVIDED BY RAY WELDON.

FROM: PETERSEN, MD, FRANKEL, AD, HARMSEN, SC, AND OTHERS, 2008, DOCUMENTATION FOR THE 2008 UPDATE OF THE UNITED STATES NATIONAL SEISMIC HAZARD MAPS: US GEOLOGICAL SURVEY, OPEN FILE REPORT 2008-1128

ASSUMED RUPTURE LOCATIONS (CASCADIA SUBDUCTION ZONE)

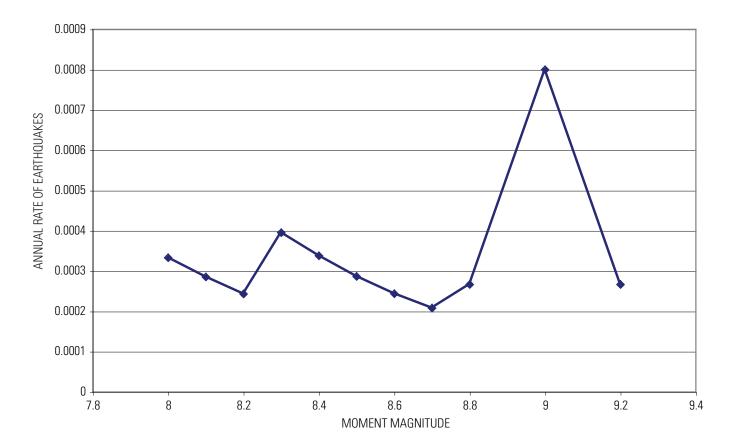
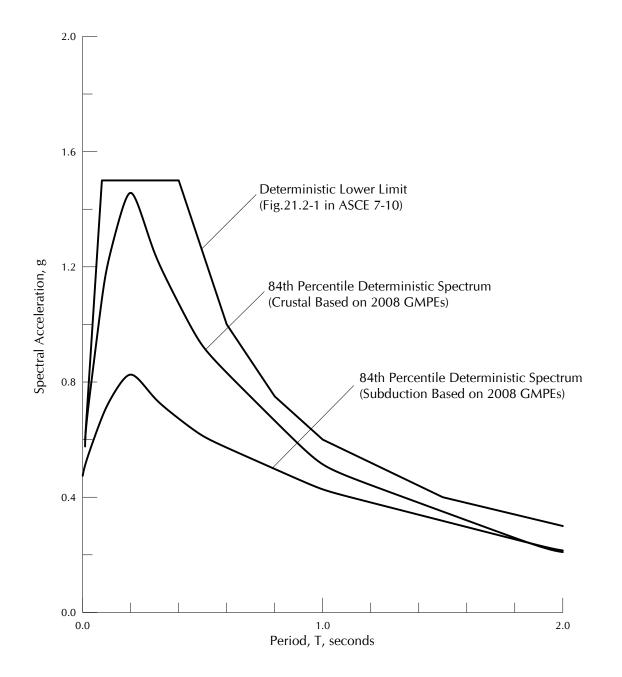
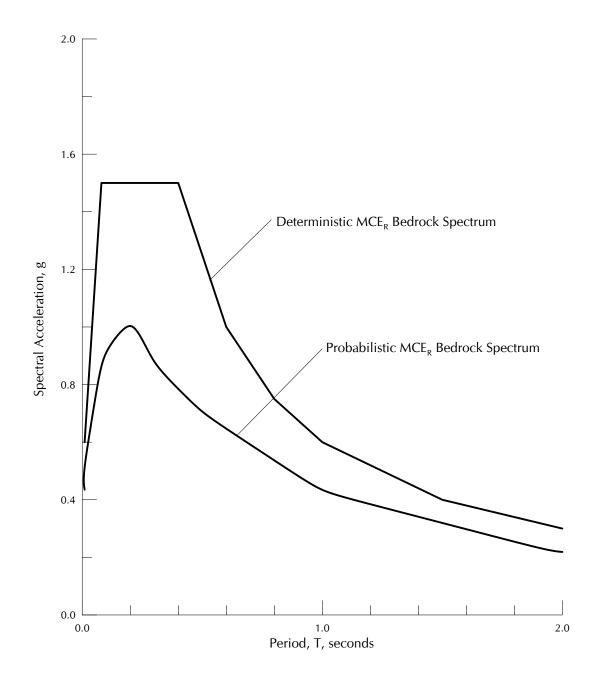
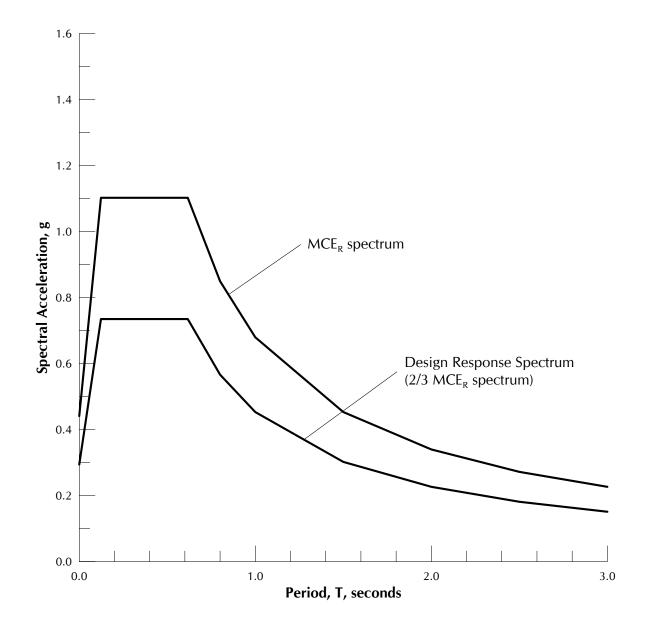



Figure 22. Magnitude-frequency distribution of the Cascadia subduction zone.

FROM: PETERSEN, M, FRANKEL, A, HARMSEN, S, AND OTHERS, 2008, DOCUMENTATION FOR THE 2008 UPDATE OF THE UNITED STATES NATIONAL SEISMIC HAZARD MAPS: US GEOLOGICAL SURVEY, OPEN FILE REPORT 2008-1128



ASSUMED MAGNITUDE-FREQUENCY DISTRIBUTION (CASCADIA SUBDUCTION ZONE)


DETERMINISTIC MCER BEDROCK SPECTRA COMPARISION (5% DAMPING)

DETERMINISTIC & PROBABILISTIC MCER BEDROCK SPECTRA COMPARISION (5% DAMPING)

JOB NO. 6111

RECOMMENDED GROUND SURFACE RESPONSE SPECTRA (5% DAMPING)

9750 SW Nimbus Avenue Beaverton, OR 97008-7172 p | 503-641-3478 f | 503-644-8034

July 31, 2018

6111 ADDITIONAL GEOTECHNICAL CONSULTATION

Beaverton School District 16550 SW Merlo Road Beaverton, OR 97003

Attention: Leslie Imes

SUBJECT: Additional Geotechnical Consultation Arts and Communications Magnet Academy 11375 SW Center Street Beaverton, Oregon

This letter provides additional geotechnical consultation performed for the Beaverton School District Arts and Communications Magnet Academy (ACMA) in Beaverton, Oregon. This letter presents the results of our review and evaluation of the north slope area at the subject site.

BACKGROUND INFORMATION

GRI completed a geotechnical investigation for the project and the results of our investigation were provided to Beaverton School District in our June 25, 2018, report titled, "Geotechnical Investigation and Site-Specific Seismic Hazard Study, Beaverton School District, Arts and Communications Magnet Academy, 11375 SW Center Street, Beaverton, Oregon". Additionally, GeoDesign, Inc. conducted a geotechnical investigation at the site in 2007, which is summarized in their August 15, 2007, report to the Beaverton School District titled, "Report of Geotechnical Engineering Services, Proposed Arts and Communication Magnet Academy Improvements, 11375 SW Center Street, Beaverton, Oregon."

CONSULTATION

Discussions with Beaverton School District personnel and Cameron McCarthy, project landscape architect, indicate Clean Water Services (CWS) requires an evaluation of the north slope to allow an adjustment of the standard CWS buffer of 35 ft to 15 ft. The existing slope has a height of about 30 to 35 ft and is generally inclined at about 25 to 28% or 4:1 (Horizontal:Vertical). A reconnaissance of the subject area indicates the slope is heavily vegetated.

A review of project plans shows the area adjacent to the slope will be re-seeded as lawn/native meadow. The lawn area will be an active use area for student physical recreation and may include a future playground.

Based on our geotechnical studies for the ACMA campus and review of the information provided, it is our opinion the implementation of a 15-ft-wide buffer will not materially affect the existing stability of the adjacent slope. This opinion is based on the subject area being used as a lawn area and playground.

This consultation letter is subject to the same limitations discussed in our June 25, 2018, geotechnical report.

Please contact the undersigned if you have any questions.

Submitted for GRI,

A. Wesley Spang, PhD, PE, GE Principal

